Publication:
Using highly excited baryons to catch the quark mass

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2009
Authors
Bicudo, P.
Cardoso, M.
Van Cauteren, T.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
E D P Sciences
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Chiral symmetry in QCD can be simultaneously in Wigner and Goldstone modes, depending on the part of the spectrum examined. The transition regime between both, exploiting for example the onset of parity doubling in the high baryon spectrum, can be used to probe the running quark mass in the mid-IR power-law regime. In passing we also argue that three-quark states naturally group into same-flavor quartets, split into two parity doublets, all splittings decreasing high in the spectrum. We propose that a measurement of masses of high-partial wave Delta∗ resonances should be sufficient to unambiguously establish the approximate degeneracy and see the quark mass running. We test these concepts with the first computation of the spectrum of high-J excited baryons in a chiral-invariant quark model
Description
© Owned by the authors, published by EDP Sciences, 2010. Work supported by grant numbers UCM-BSCH GR58/08 910309, FPA2007-29115-E, FPA2008-00592, FIS2008- 01323, CERN/FP /83582/2008, POCI/FP /81933/2007, /81913/2007, PDCT/FP /63907/2005 and /63923/2005, Spain-Portugal bilateral grant HP2006-0018 / E-56/07, as well as the Flanders Research Foundation (FWO). FLE acknowledges useful conversations with Craig Roberts, Eric Swanson and Christoph Hanhart during the recent Bad- Honnef meetings. International Iupap Conference on Few-Body Problems in Physics(19. 2009. Bonn, Alemania)
Unesco subjects
Keywords
Citation
1. L. Y. Glozman, Phys. Lett. B 475 (2000) 329. 2. E. S. Swanson, Phys. Lett. B 582, (2004) 167. 3. R. F. Wagenbrunn and L. Y. Glozman, Phys. Lett. B 643, (2006) 98; T. D. Cohen and L. Y. Glozman, Mod. Phys. Lett. A 21, (2006) 1939; L. Y. Glozman, A. V. Nefediev and J. E. F. Ribeiro, Phys. Rev. D 72, (2005) 094002. 4. C. Amsler et al. [PDG], Phys. Lett. B 667, (2008) 1. 5. A. Le Yaouanc et al., Phys. Rev. D 31 (1985) 137. 6. P. Bicudo et al., Phys. Lett. B 442, (1998) 349. 7. P.O. Bowman et al., Nucl. Phys. B, Proc. Suppl. 161, (2006), 27; M.B. Parappilly et al., Phys. Rev. D73, (2006) 054504; S. Furui, Few-Body Syst. 45, (2009) 51; 46, (2009) 73. 8. For a discussion on HQCD, a good starting point is N. H. Christ and T. D. Lee, Phys. Rev. D 22, (1980) 939. 9. A. V. Nefediev, J. E. F. Ribeiro and A. P. Szczepaniak, JETP Lett. 87, (2008) 271. 10. P. Bicudo, M. Cardoso T. Van Cauteren and Felipe J. Llanes Estrada, Phys. Rev. Lett. 103, (2009) 092003. 11. C. E. DeTar and T. Kunihiro, Phys. Rev. D 39, (1989) 2805; D. Jido, T. Hatsuda and T. Kunihiro, Phys. Rev. Lett. 84, (2000) 3252. 12. T. D. Cohen and L. Y. Glozman, Phys. Rev. D 65, (2001) 016006. 13. W. Lucha and F. F. Schoberl, Mod. Phys. Lett. A 5, (1990) 2473. 14. E. van Beveren, Z. Phys. C 17, (1983) 135. 15. T. Hahn, Comput. Phys. Commun. 168, (2005) 78.
Collections