Publication:
Sensing properties of asymmetric double-layer-covered tapered fibers

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2004-03-10
Authors
Bueno Guillén, Francisco Javier
Esteban Martínez, Óscar
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
The Optical Society Of America
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
A novel, to our knowledge, device based on a tapered optical fiber with a double-layer deposition including a metallic media is presented, and its properties are studied. The main novelty of the device consists of the introduction of a dielectric layer, whereas the systems depicted in the literature are simply metal-coated tapered fibers. The presence of the dielectric layer permits one to tune the response of the device to the refractive index of the surrounding medium. We have proved the suitability of this scheme for refractive-index sensing by depicting two measurement modes, namely, total power attenuation and spectral transmittance.
Description
© 2004 Optical Society of America. We thank E. Bernabeu for his valuables comments and suggestions and C. Cosculluela from the Departamento de Física Aplicada of the Universidad de Zaragoza, Spain, for helping us with the devices’ elaboration. This research has been partially supported by European Union project Multiparametric In Situ Spectroscopic Measuring System for Coastal Monitoring, contract EVK3-CT2000-00519, and Spanish project Aplicación de sensores de fibra óptica al control in-situ de parámetros físicos el medio acuático, Programa Nacional de Recursos Naturales, Ministerio de Ciencia y Tecnología, ref. REN 2001-1495.
Keywords
Citation
1.R. Alonso, F. Villuendas, J. Tornos, and J. Pelayo, “New in-line optical-fiber sensor based on surface plasmon excitation,” Sens. Actuators A 37–38, 187–192 (1993). 2. R. Alonso, J. Subias, J. Pelayo, F. Villuendas, and F. Tornos, “Single-mode, optical-fiber sensors and tunable wavelength filters based on the resonant excitation of metal-clad modes,” Appl. Opt. 33, 5197–5201 (1994). 3. Ó. Esteban, M. C. Navarrete, A. González-Cano, and E. Bernabeu, “Measurement of the degree of salinity of water with a fiber-optic sensor,” Appl. Opt. 38, 5267–5271 (1999). 4. Ó. Esteban, M. C. Navarrete, A. González-Cano, and E. Bernabeu, “Simple model of compound waveguide structures used as fiber-optic sensors,” Opt. Lasers Eng. 33, 219–233 (2000). 5. A. Díez, M. V. Andrés, and D. O. Culverhouse, “In-line polarizers and filters made of metal-coated tapered fibers: resonant excitation of surface plasma modes,” IEEE Photon. Technol. Lett. 10, 833–835 (1998). 6. Díez, M. V. Andrés, and J. L. Cruz, “Hybrid surface plasma modes in circular metal-coated tapered fibers,” J. Opt. Soc. Am. A 16, 2978–2982 (1999). 7. Díez, M. V. Andrés, and J. L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sens. Actuators B 73, 95–99 (2001). 8. S. J. Al-Bader and M. Imtaar, “Optical fiber hybrid-surface plasmon polaritons,” J. Opt. Soc. Am. A 10, 83–88 (1993). 9. S. J. Al-Bader and M. Imtaar, “Azimuthally uniform surface-plasma modes in thin metallic cylindrical shells,” IEEE J. Quantum Electron. 28, 525–533 (1992). 10. R. K. Kenny, T. A. Birks, and K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 77, 1654–1656 (1991). 11. T. A. Birks, P. St. J. Russell, and C. N. Pannell, “Low power acousto-optic device based on a tapered single-mode fiber,” IEEE Photon. Technol. Lett. 6, 725–727 (1994). 12. D. O. Culverhouse, T. A. Birks, S. G. Farwell, and P. St. J. Russell, “3 × 3 all-fiber routing switch,” IEEE Photon. Technol. Lett. 9, 333–335 (1997).
Collections