Publication:
Atmospheric blocking signatures in total ozone and ozone miniholes

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2010-07-15
Authors
Antón Martínez, Manuel
García García, José Agustín
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Meteorological Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
This paper analyzes the statistical relationship between the total ozone column (TOC) and atmospheric blocking using 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data for the 1978-98 period, with special emphasis on winter and the European and eastern Pacific sectors. Regional blocking occurrence is accompanied by a decrease of TOC within the anticyclonic circulation region and a distinctive ozone increase upstream and downstream (upstream and south) in the Pacific (European) sector. Blocking significantly enhances the likelihood of low TOC extremes, especially over the Scandinavian and the Alaska Peninsulas, where more than 50% of winter blocks lead to TOC values in the lowest tail of the distribution. The relationship between ozone miniholes and blocking is confined to the high latitudes of both basins and is strong in Europe, where about half of the ozone miniholes occur simultaneously with blocking. Blocking-related ozone miniholes (blocking ozone miniholes) are also among the most intense and persistent. Although blocking activity does not drive the interannual variability of regional ozone miniholes, blocking ozone miniholes account for up to two-thirds of the total observed trend of ozone miniholes in Europe. The polar vortex is proposed as a feasible candidate for explaining the enhanced coupling of blocking and ozone miniholes in Europe and its long-term modulation. Blocking ozone miniholes are consistent with an almost purely dynamic origin caused by horizontal transport of ozone-poor air and vertical motions working together at different levels to reduce ozone content. Although the contribution of the former is dominant, accounting for two-thirds of ozone reduction in the 330-850-K column, the effect of the latter becomes a distinctive feature of blocking ozone miniholes.
Description
© 2010 American Meteorological Society. This work has been partially supported by the MICINN (Spanish government) under Projects CGL2007-65891-C05-05/CLI (DB and JAG) and CGL2008-05939-C03-02/CLI (M. Anton). ERA-40 reanalysis data were provided by the ECMWF from their data server Web site (http://www.ecmwf.int/). MA thanks Junta de Extremadura-Consejeria de Infraestructuras y Desarrollo Tecnologico-and Fondo Social Europeo for concession of a postdoctoral grant. R. R. Garcia provided helpful comments on this manuscript. Two anonymous reviewers contributed to improving the final version of this paper.
Keywords
Citation
Allen, D. R., and N. Nakamura, 2002: Dynamical reconstruction of the record low column ozone over Europe on 30 November 1999. Geophys. Res. Lett., 29, 1362, doi:10.1029/2002GL014935. Altenhoff, A. M., O. Martius, M. Croci-Maspoli, C. Schwierz, and H. C. Davies, 2008: Linkage of atmospheric blocks and synopticscale Rossby waves: A climatological analysis. Tellus, 60A, 1053–1063. Antón, M., M. L. Cancillo, A. Serrano, J. M. Vaquero, and J. A. García, 2007: Ozone minihole over southwestern Spain during January 2004: Influence over ultraviolet radiation. Geophys. Res. Lett., 34, L10808, doi:10.1029/2007GL029689. ——, A. Serrano, M. L. Cancillo, and J. A. García, 2008: Total ozone and solar erythemal irradiance in southwestern Spain: Day-to-day variability and extreme episodes. Geophys. Res. Lett., 35, L20804, doi:10.1029/2008GL035290. Appenzeller, C., A. K. Weiss, and J. Staehelin, 2000: North Atlantic Oscillation modulates total ozone winter trends. Geophys. Res. Lett., 27, 1131–1134. Barriopedro,D.,R.Garcia Herrera, A. R. Lupo, and E.Hernández, 2006: A climatology of Northern Hemisphere blocking. J. Climate, 19, 1042–1063. ——, R. García Herrera, and R. M. Trigo, 2010: Application of blocking diagnosis methods to general circulation models. Part I. A novel detection scheme. Climate Dyn., in press, doi:10.1007/s00382-010-0767-5. Bojkov, R. D., and D. S. Balis, 2001: Characteristics of episodes with extremely low ozone values in the northern middle latitudes 1957–2000. Ann. Geophys., 19, 797–897. Brönnimann, S., and L. L. Hood, 2003: Frequency of low-ozone events over northwestern Europe in 1952–1963 and 1990–2000. Geophys. Res. Lett., 30, 2118, doi:10.1029/2003GL018431. Canziani, P. O., R. H. Compagnucci, and A. Bischoff, 2002:A study of impacts of tropospheric synoptic processes on the genesis and evolution of extreme total ozone anomalies over southern South America. J. Geophys. Res., 107, 4741, doi:10.1029/2001JD000965. Carslaw, K. S., and Coauthors, 1998: Increased stratospheric ozone depletion due to mountain-induced atmospheric waves. Nature, 391, 675–678. Croci-Maspoli, M., C. Schwierz, and H. C. Davies, 2007: Atmospheric blocking: Space–time links to the NAO and PNA. Climate Dyn., 29, 713–725. Dethof, A., and E. V. Hólm, 2004: Ozone assimilation in the ERA-40 reanalysis project. Quart. J. Roy. Meteor. Soc., 130, 2851–2872, doi:10.1256/qj.03.196. Dobson, G. M. B., D. N. Harrison, and J. Lawrence, 1929: Measurements of the amount of ozone in the earth’s atmosphere and its relation to other geophysical conditions: Part III. Proc. Roy. Soc. London, 122A, 456–486. Engelen, R. J., 1996: The effect of planetary waves on the total ozone deviations in the presence of a persistent blocking anticyclone system. J. Geophys. Res., 101 (D22), 28 775–28 784. Farman, J. C., B. G. Gardiner, and J. D. Shanklin, 1985: Large losses of total ozone in Antarctica reveal seasonal ClOx 5 NOx interaction. Nature, 315, 207–210. ——, A. O’Neill, and R. Swinbank, 1994: The dynamics of the arctic polar vortex during the EASOE campaign. Geophys. Res. Lett., 21, 1195–1198. Fusco, A. C., and M. L. Salby, 1999: Interannual variations of total ozone and their relationships to variations of planetary wave activity. J. Climate, 12, 1619–1629. Grewe, V., and M. Dameris, 1997: Heterogeneous PSC ozone loss during an ozone minihole. Geophys. Res. Lett., 24, 2503–2506. ——, ——, and R. Sausen, 1998: Impact of stratospheric dynamics and chemistry on Northern Hemisphere midlatitude ozone loss. J. Geophys. Res., 103, 25 417–25 433. Hadjinicolaou, P., and J. A. Pyle, 2004: The impact of Arctic ozone depletion on northern middle latitudes: Interannual variability and dynamical control. J. Atmos. Chem., 47, 25–43. Harris, N. R. P., and Coauthors, 2008: Ozone trends at northern mid- and high latitudes—A European perspective. Ann. Geophys., 26, 1207–1220. Hood, L.L., andB.E. Soukharev, 2005: Interannual variations of total ozone at northern midlatitudes correlated with stratospheric EP flux and potential vorticity. J. Atmos. Sci., 62, 3724–3740. ——, J. P. McCormack, and K. Labitzke, 1997: An investigation of dynamical contributions to midlatitude ozone trends in winter. J. Geophys. Res., 102, 13 079–13 093. ——, S. Rossi, and M. Beulen, 1999: Trends in lower stratospheric zonal winds, Rossby wave breaking behavior and column ozone at northern midlatitudes. J. Geophys. Res., 104, 24 321–24 339. ——, B. E. Soukharev, M. Fromm, and J. P. McCormack, 2001: Origin of extreme ozone minima at middle to high northern latitudes. J. Geophys. Res., 106, 20 925–20 940. Hudson, R. D., M. F. Andrade, M. B. Follette, and A. D. Frolov, 2006: The total ozone field separated into meteorological regimes—Part II: Northern Hemisphere mid-latitude total ozone trends. Atmos. Chem. Phys., 6, 5183–5191. Iwao, K., and T. Hirooka, 2006: Dynamical quantifications of ozone minihole formation in both hemispheres. J. Geophys. Res., 111, D02104, doi:10.1029/2005JD006333. James, P. M., 1998: A climatology of ozone miniholes over the Northern Hemisphere. Int. J. Climatol., 18, 1287–1303. ——, and D. Peters, 2002: The Lagrangian structure of ozone miniholes and potential vorticity anomalies in the Northern Hemisphere. Ann. Geophys., 20, 835–846. ——, ——, and D. W. Waugh, 2000: Very low ozone episodes due to polar vortex displacement. Tellus, 52B, 1123–1137. Keil, M., D. R. Jackson, and M. C. Hort, 2007: The January 2006 low ozone event over the UK. Atmos. Chem. Phys., 7, 961–972. Koch, G., H. Wernli, C. Schwierz, J. Staehelin, and T. Peter, 2005: A composite study on the structure and formation of ozone miniholes and minihighs over central Europe. Geophys. Res. Lett., 32, L12810, doi:10.1029/2004GL022062. Krzyscin, J. W., 2002: Long-term changes in ozone minihole event frequency over the Northern Hemisphere derived from ground-based measurements. Int. J. Climatol., 22, 1425–1439. Lary, D. J., M. P. Chipperfield, J. A. Pyle, W. A. Norton, and L. P. Riishojgaard, 1995: Three-dimensional tracer initialization and general diagnostic using equivalent PV latitude–potential temperature coordinates. Quart. J. Roy. Meteor. Soc., 121, 187–210. Lowe, D., A. R. MacKenzie, H. Schlager, C. Voigt, A. Dornbrack, M. J. Mahoney, and F. Cairo, 2006: Liquid particle composition and heterogeneous reactions in a mountain wave polar stratospheric cloud. Atmos. Chem. Phys., 6, 3611–3623. Martius, O., L. M. Polvani, and H. C. Davies, 2009: Blocking precursors to stratospheric sudden warming events. Geophys. Res. Lett., 36, L14806, doi:10.1029/2009GL038776. McCormack, J. P., and L. L. Hood, 1997: The frequency and size of ozone ‘‘minihole’’ events at northern midlatitudes in February. Geophys. Res. Lett., 24, 2647–2650. Nash, E. R., P. A. Newman, J. E. Rosenfield, and M. R. Schoeberl, 1996: An objective determination of the polar vortex using Ertel’s potential vorticity. J. Geophys. Res., 101, 9471–9478. Newman, P. A., L. R. Lait, and M. R. Schoeberl, 1988: The morphology and meteorology of Southern Hemisphere spring total ozone miniholes. Geophys. Res. Lett., 15, 923–926. Orsolini, Y. J., and V. Limpasuvan, 2001: The North Atlantic Oscillation and the occurrences of ozone miniholes. Geophys. Res. Lett., 28, 4099–4102. ——, and F. J. Doblas-Reyes, 2003: Ozone signatures of climate patterns over the Euro–Atlantic sector in the spring. Quart. J. Roy. Meteor. Soc., 129, 3251–3263. ——, and G. Nikulin, 2006: A low ozone episode during the European heatwave of August 2003. Quart. J. Roy. Meteor. Soc., 132, 667–680. ——,D. B. Stephenson, and F. J. Doblas Reyes, 1998: Storm tracks signature in total ozone during Northern Hemisphere winter. Geophys. Res. Lett., 25, 2413–2416. ——, and Coauthors, 2003: Summertime low-ozone episodes over northern high latitudes. Quart. J. Roy. Meteor. Soc., 129, 3265–3276. Pelly, J., and B. Hoskins, 2003: A new perspective on blocking. J. Atmos. Sci., 60, 743–755. Peters, D., and D. W. Waugh, 1996: Influence of barotropic shear on the poleward advection of upper-tropospheric air. J. Atmos. Sci., 53, 3013–3031. ——, and G. Entzian, 1999: Longitude-dependent decadal changes of total ozone in boreal months during 1979–1992. J. Climate, 12, 1038–1048. ——, J. Egger, and G. Entzian, 1995: Dynamical aspects of ozone minihole formation. Meteor. Atmos. Phys., 55, 205–214. Petzoldt, K., 1999: The role of dynamics in total ozone deviations from their long-term mean over the Northern Hemisphere. Ann. Geophys., 17, 231–241. ——, B. Naujokat, and K. Neugebohren, 1994: Correlation between stratospheric temperature, total ozone and tropospheric weather systems. Geophys. Res. Lett., 21, 1203–1206. Randel, W. J., F. Wu, and R. Stolarski, 2002: Changes in column ozone correlated with the stratospheric EP flux. J. Meteor. Soc. Japan, 80, 849–862. Reed, R. J., 1950: The role of vertical motions in ozone–weather relationships. J. Meteor., 7, 263–267. Reid, S. J., A. F. Tuck, and G. Kildaris, 2000: On the changing abundance of ozone minima at northern midlatitudes. J. Geophys. Res., 105, 12 169–12 180. Rex, D. F., 1950: Blocking action in the middle troposphere and its effect upon regional climate. Part II: The climatology of blocking action. Tellus, 2, 275–301. Salby, M. L., and P. F. Callaghan, 1993: Fluctuations of total ozone and their relationship to stratospheric air motions. J. Geophys. Res., 98, 2715–2727. Schwierz, C., M. Croci-Maspoli, and H. C. Davies, 2004: Perspicacious indicators of atmospheric blocking. Geophys. Res. Lett., 31, 6125–6128. Semane,N., H. Teitelbaum, and C. Basdevant, 2002:Avery deep ozone minihole in the Northern Hemisphere stratosphere at mid-latitudes during the winter of 2000. Tellus, 54A, 382–389. Solomon, S., 1999: Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys., 37, 275–316. ——, R. W. Portmann, R. R. Garcia, L. W. Thomason, L. R. Poole, and M. P. McCormick, 1996: The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes. J. Geophys. Res., 101, 6713–6727. Staehelin, J., N. R. P. Harris, C. Appenzeller, and J. Eberhard, 2001: Ozone trends: A review. Rev. Geophys., 39, 231–290. Steinbrecht, W., H. Claude, U. Kohler, and K. P. Hoinka, 1998: Correlations between tropopause height and total ozone: Implications for long-term changes. J. Geophys. Res., 103, 19 183–19 192. Stenke, A., and V. Grewe, 2004: Impact of dynamically induced ozone minihole events on PSC formation and chemical ozone destruction. Adv. Space Res., 33, 1062–1067. Stolarski, R. S., P. Bloomfield, and R. D. McPeters, 1991: Total ozone trends deduced from Nimbus 7 TOMS data. Geophys. Res. Lett., 18, 1015–1018. Teitelbaum, H., M. Moustaoui, and M. Fromm, 2001: Exploring polar stratospheric cloud and ozone minihole formation: The primary importance of synoptic-scale flow perturbations. J. Geophys. Res., 106, 28 173–28 188. Tilmes, S., R. Muller, A. Engel, M. Rex, and J. M. Russell III, 2006: Chemical ozone loss in the Arctic and Antarctic stratosphere between 1992 and 2005. Geophys. Res. Lett., 33, L20812, doi:10.1029/2006GL026925. Tyrlis, R., and B. J. Hoskins, 2008a: Aspects of Northern Hemisphere atmospheric blocking climatology. J. Atmos. Sci., 65, 1638–1652. ——, and ——, 2008b: The morphology of Northern Hemisphere blocking. J. Atmos. Sci., 65, 1653–1665. Uppala, S. M., and Coauthors, 2005: The ERA-40 Reanalysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012. Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 467 pp. Woollings, T., A. Charlton-Perez, S. Ineson, A. G. Marshall, and G. Masato, 2010: Associations between stratospheric variability and tropospheric blocking. J. Geophys. Res., 115, D06108, doi:10.1029/2009JD012742.
Collections