Publication:
A discussion of the links between solar variability and high-storm-surge events in Venice

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2010-07-01
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Geophysical Union
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
This study explores the long-term frequency variability of high-surge events (HSEs) in the North Adriatic, the so-called acqua alta, which, particularly during autumn, cause flooding of the historical city center of Venice. The period 1948-2008, when hourly observations of sea level are available, is considered. The frequency of HSEs is correlated with the 11 year solar cycle, solar maxima being associated with a significant increase in the October-November-December HSE frequency. The seasonal geopotential height pattern at 1000 hPa (storm surge pattern; SSP) associated with the increased frequency of HSEs is identified for the whole time period and found to be similar to the positive phase of the main variability mode of the regional atmospheric circulation (empirical orthogonal function 1; EOF1). However, further analysis indicates that solar activity modulates the spatial patterns of the atmospheric circulation (EOF) and the favorable conditions for HSE occurrence (SSP). Under solar maxima, the occurrence of HSEs is enhanced by the main mode of regional atmospheric variability, namely, a large-scale wave train pattern that is symptomatic of storm track paths over northern Europe. Solar minima reveal a substantially different and less robust SSP, consisting of a meridionally oriented dipole with a preferred southward path of storm track activity, which is not associated with any dominant mode of atmospheric variability during low-solar periods. It is concluded that solar activity plays an indirect role in the frequency of HSEs by modulating the spatial patterns of the main modes of atmospheric regional variability, the favorable patterns for HSE occurrence, and their mutual relationships, so that constructive interaction between them is enhanced during solar maxima and inhibited in solar minima.
Description
© 2010 by the American Geophysical Union. NCEP reanalysis data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, at their Web site (http://www.cdc.noaa.gov/). The Ufficio Idrografico of Venice provided sea level data. Solar data were obtained from the National Geophysical Data Center of the NOAA at their Web site (www.ngdc.noaa.gov/stp/SOLAR/ftpsolarradio.html). This study was partially supported by EU Sixth Framework Program (CIRCE) contract 036961 (GOCE) and the ENAC project (PTDC/AAC-CLI/103567/2008) funded by the IDL-FFCUL. We also acknowledge the contribution from the ESF MedCLIVAR program.
Keywords
Citation
Ammerman, A. J., and C. E. McClennen (2000), Saving Venice, Science, 289(5483), 1301–1302, doi:10.1126/science.289.5483.1301. APAT (2006), Aggiornamento sulle osservazioni dei livelli di marea nella laguna di Venezia, Rapporto no. 69/2006, Agency for Environmental Protection and Technical Services, Venice. Baldwin, M. P., and T. J. Dunkerton (2005), The solar cycle and stratosphere-troposphere dynamical coupling, J. Atmos. Sol. Terr. Phys., 67, 71–82, doi:10.1016/j.jastp.2004.07.018. Balling, R.C., and S. S. Roy Jr. (2005), Analysis of spatial patterns underlying the linkage between solar irradiance and near-surface air temperatures, Geophys. Res. Lett., 32, L11702, doi:10.1029/2005GL022444. Barnston, A. G., and R. E. Livezey (1987), Classification, seasonality and persistence of low-frequency atmospheric circulation patterns, Mon. Weather Rev., 115, 1083–1126, doi:10.1175/1520-0493(1987) 115<1083:CSAPOL>2.0.CO;2. Barriopedro, D., R. García Herrera, and R. Huth (2008), Solar modulation of Northern Hemisphere winter blocking, J. Geophys. Res., 113, D14118, doi:10.1029/2008JD009789. Camuffo, D. (1993), Analysis of the sea surges at Venice from A.D. 782 to 1990, Theor. Appl. Climatol., 47, 1–14, doi:10.1007/BF00868891. Camuffo, D., and G. Sturaro (2003), Sixty-cm submersion of Venice discovered thanks to Canaletto’s paintings, Clim. Change, 58(3), 333–343, doi:10.1023/A:1023902120717. Camuffo, D., and G. Sturaro (2004), Use of proxy-documentary and instrumental data to assess the risk factors leading to sea flooding in Venice, Global Planet. Change, 40, 93–103, doi:10.1016/S0921-8181(03)00100-0. Camuffo, D., C. Secco, P. Brimblecombe, and J. Martin Vide (2000), Sea storms in the Adriatic Sea and the western Mediterranean during the last millennium, Clim. Change, 46, 209–223, doi:10.1023/A:1005607103766. Christoforou, P., and S. Hameed (1997), Solar cycle and the Pacific “centers of action,” Geophys. Res. Lett., 24(3), 293–296, doi:10.1029/97GL00017. Coughlin, K. T., and K. K. Tung (2004), 11‐year solar cycle in the stratosphere extracted by the empirical mode decomposition method, Adv. Space Res., 34, 323–329, doi:10.1016/j.asr.2003.02.045. Fagherazzi, S., G. Fosser, L. D’Alpaos, and P. D’Odorico (2005), Climatic oscillations influence the flooding of Venice, Geophys. Res. Lett., 32(19), L19710, doi:10.1029/2005GL023758. Gleisner, H., and P. Thejll (2003), Patterns of tropospheric response to solar variability, Geophys. Res. Lett., 30(13), 1711, doi:10.1029/2003GL017129. Gleisner, H., P. Thejll, M. Stendel, E. Kaas, and B. Machenhauer (2005), Solar signals in tropospheric re-analysis data: Comparing NCEP/NCAR and ERA 40, J. Atmos. Sol. Terr. Phys., 67, 785–791, doi:10.1016/j.jastp.2005.02.001. Huth, R., L. Pokorná, J. Bochníček, and P. Hejda (2006), Solar cycle effects on modes of low-frequency circulation variability, J. Geophys. Res., 111, D22107, doi:10.1029/2005JD006813. Kalnay, E., et al. (1996), The NCEP/NCAR 40‐year reanalysis project, Bull. Am. Meteorol. Soc., 77, 437–471, doi:10.1175/1520-0477(1996) 077<0437:TNYRP>2.0.CO;2. Kodera, K. (2002), Solar cycle modulation of the North Atlantic Oscillation: Implication in the spatial structure of the NAO, Geophys. Res. Lett., 29(8), 1218, doi:10.1029/2001GL014557. Kodera, K., and Y. Kuroda (2005), A possible mechanism of solar modulation of the spatial structure of the North Atlantic Oscillation, J. Geophys. Res., 110, D02111, doi:10.1029/2004JD005258. Labitzke, K. (2005), On the solar cycle‐QBO relationship: A summary, J. Atmos. Sol. Terr. Phys., 67, 45–54, doi:10.1016/j.jastp.2004.07.016. Lean, J., and D. Rind (2001), Earth’s response to a variable Sun, Science, 292, 234–236, doi:10.1126/science.1060082. Lionello, P. (2005), Extreme storm surges in the Gulf of Venice: Present and future climate, in Venice and Its Lagoon, State of Knowledge, edited by C. Fletcher and T. Spencer, pp. 59–65, Cambridge Univ. Press, Cambridge, UK. Matthes, K., Y. Kuroda, K. Kodera, and U. Langematz (2006), Transfer of the solar signal from the stratosphere to the troposphere: Northern winter, J. Geophys. Res., 111, D06108, doi:10.1029/2005JD006283. Pirazzoli, P. A. (1991), Possible defenses against a sea-level rise in the Venice area, Italy, J. Coastal Res., 7, 231 248. Pirazzoli, P. A., and A. Tomasin (1999), Recent abatement of easterly winds in the northern Adriatic, Int. J. Climatol., 19, 1205–1219, doi:10.1002/(SICI)1097-0088(199909)19:11<1205::AID-JOC405>3.0. CO;2-D. Pirazzoli, P. A., and A. Tomasin (2002), Recent evolution of surge-related events in the northern Adriatic area, J. Coastal Res., 18(3), 537–554. Robinson, A. R., A. Tomasin, and A. Artegiani (1973), Flooding of Venice, phenomenology and prediction of the Adriatic storm surge, Q. J. R. Meteorol. Soc., 99(422), 688–692, doi:10.1002/qj.49709942210. Shindell, D., D. Rind, N. Balachandran, J. Lean, and P. Lonergan (1999), Solar cycle variability, ozone, and climate, Science, 284, 305–308, doi:10.1126/science.284.5412.305. Smith, R. L. (1986), Extreme value theory based in the n‐largest annual events, J. Hydrol. [Amsterdam], 86, 27–43, doi:10.1016/0022-1694(86) 90004-1. Tapping, K. F., and D. P. Charrois (1994), Limits to the accuracy of the 10.7 cm flux, Sol. Phys., 150, 305–315, doi:10.1007/BF00712892. Tomasin, A. (2002), The frequency of Adriatic surges and solar activity, ISDGM Tech. Rep., 194, 1–8. Trigo, I. F., and T. D. Davies (2002), Meteorological conditions associated with sea surges in Venice: A 40 year climatology, Int. J. Climatol., 22, 787–803, doi:10.1002/joc.719. Trigo, I. F., T. D. Davies, and G. R. Bigg (1999), Objective climatology of cyclones in the Mediterranean region, J. Clim., 12, 1685–1696, doi:10.1175/1520-0442(1999)012<1685:OCOCIT>2.0.CO;2. Tsimplis, M. N., and S. A. Josey (2001), Forcing of the Mediterranean Sea by atmospheric oscillations over the North Atlantic, Geophys. Res. Lett., 28(5), 803–806, doi:10.1029/2000GL012098. van Loon, H., and D. J. Shea (1991), A probable signal of the 11‐year solar cycle in the troposphere of the Northern Hemisphere, Geophys. Res. Lett., 26, 2893–2896, doi:10.1029/1999GL900596. Vaquero, J. M. (2007), Historical sunspot observations: A review, Adv. Space Res., 40, 929–941, doi:10.1016/j.asr.2007.01.087. Zanchettin, D., P. Traverso, and M. Tomasino (2006), Discussion on sea level fluctuations along the Adriatic coasts coupling to climate indices forced by solar activity: Insights into the future of Venice, Global Planet. Change, 50, 226–234, doi:10.1016/j.gloplacha.2006.01.001. Zanchettin, D., P. Traverso, and M. Tomasino (2007), Observations on future sea level changes in the Venice lagoon, Hydrobiologia, 577, 41–53, doi:10.1007/s10750-006-0416-5.
Collections