Publication:
Influence of the minimization of self-scattering events on the Monte Carlo simulation of carrier transport in III-V semiconductors

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1999-09
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Iop Publishing Ltd
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
This paper presents a procedure to improve the algorithm of Sangiorgi, Ricco and Venturi for the calculation of the time of flight in Monte Carlo simulations. The method is used to efficiently optimize the step function in which the total scattering probability is discretized. The optimization criterion suggested in this work can reduce the self-scattering events to less than 30% in a fairly wide range of temperatures, applied fields and doping levels. Different examples are presented to illustrate the advantages of the method.
Description
© 1999 IOP Publishing Ltd. This work has been funded by the European Community through programme TMR (project ERBFMRXCT960050). The authors wish to thank Dr Tomás González from the University of Salamanca for his helpful comments.
Unesco subjects
Keywords
Citation
[1] González, T., Pardo, D., Varani, L., Reggiani, L., 1993, "Monte Carlo analysis of noise spectra in Schottky-barrier diodes", Appl. Phys. Lett., 63 (22), 3040–2. [2] Starikov, E., Shiktorov, P., Gruzinskis, V., Varani, L., Vaissiere, J.C., Nougier, J.P., Reggiani, L., 1996, "Monte Carlo calculation of noise and small-signal impedance spectra in submicrometer GaAs n+nn+ diodes", J. Appl. Phys., 79 (1), 242–52. [3] González, T., Pardo, D., Varani, L., Reggiani, L., 1994, "A microscopic interpretation of hot-electron noise in Schottky barrier diodes", Semicond. Sci. Technol., 9, 580–3. [4] González, T., Pardo, D., Varani, L., Reggiani, L., 1995, "Monte Carlo analysis of the behavior and spatial origin of electronic noise in GaAs MESFET’s", IEEE Trans. Electron Devices, 42 (5), 991–8. [5] Nougier, J.P., 1994, "Fluctuations and noise of hot carriers in semiconductor materials and devices", IEEE Trans. Electron Devices, 41 (11), 2034–49. [6] Rees, H.D., 1968, "Calculation of steady state distribution functions by exploiting stability", Phys. Lett. A, 26 (9), 416–17. [7] Hockney, R.W., Eastwood, J.W., 1988, "Computer Simulation Using Particles" (Bristol: Institute of Physics Publishing). [8] Yorston, R.M., 1986, "Free-flight time generation in the Monte Carlo simulation of carrier transport in semiconductors", J. Comput. Phys., 64, 177–94. [9] Sangiorgi, E., Riccó, B., Venturi, F., 1988, "MOS2: an efficient Monte Carlo simulator for MOS devices", IEEE Trans. on CAD, 7, 259–71. [10] Adachi, S., 1992, "Physical Properties of III–V Semiconductor Compounds" (New York: Wiley). [11] Fischetti, M.V., 1991, "Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures—part I: homogeneous transport", IEEE Trans. Electron Devices, 38 (3), 634–49. [12] Jacoboni, C., Reggiani, L., 1983, "The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials", Rev. Mod. Phys., 55 (3), 645–705. [13] González, T., Velazque, J.E., Guttierrez, P.M., Pardo, D., 1991, "Five-valley model for the study of electron transport properties at very high electric fields in GaAs", Semicond. Sci. Technol., 6, 862–71. [14] González, T., Velazque, J.E., Guttierrez, P.M., Pardo, D., 1992, "Electron transport in InP under high electric field conditions", Semicond. Sci. Technol., 7, 31–6. [15] Fischetti, M.V., 1991, "Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures—part II: submicrometer MOSFET’s", IEEE Trans. Electron Devices, 38 (3), 650–60. [16] Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., 1995, "Numerical Recipes in C: The Art of Scientific Computing", 2nd edn, (Cambridge: Cambridge University Press). [17] Pantoja, J.M., Sebastián, J.L., Muñoz, S., 1998, "Intrinsic limitations of GaAs device cooling for microwave low noise applications", Proc. IEEE Trans. Microwave Theory and Techniques Symp., (Baltimore, 1998). [18] Pantoja, J.M., Lin, C.I., Shaalan, M., Sebastián, J.L., Hartnagel, H.L., "Limitations of GaAs and InP device cooling for microwave low noise operation", IEEE Trans. Microwave Theory and Techniques submitted. [19] Jacoboni, C., Lugli, P., 1989, "The Monte Carlo Method for Semiconductor Device Simulation", (Vienna: Springer). [20] Pantoja, J.M., Sebastián, J.L., 1997, "Monte Carlo simulation of electron velocity in degenerate GaAs", IEEE Trans. Electron Device Lett., 18 (6), 258–60.
Collections