Publication:
Coupled maximum entropy: Monte Carlo estimation of microwave, millimeter-wave and submillimeter-wave spectrum of velocity fluctuations in GaAs

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1998-01-12
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Inst Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The maximum entropy method is presented in this letter as a highly interesting procedure for the investigation of high frequency noise properties of bulk semiconductors and electron devices at microscopic level. A Monte Carlo simulation of the hot electron velocity fluctuations in bulk GaAs has been performed to illustrate the efficiency and usefulness of this procedure. Comparisons with the most popular techniques presently used in Monte Carlo simulations of noise have also been performed. (C) 1998 American Institute of Physics.
Description
© 1998 American Institute of Physics. This work has been supported by the TMR programme of the European Community, under Contract No. ERBFMRXCT960050. The authors wish to express their appreciation to Professor D. Pardo and Dr. T. González of the University of Salamanca for their interesting conversations. Herdis Buck is also acknowledged for her linguistic revision of the manuscript.
Unesco subjects
Keywords
Citation
1) R. Fauquembergue, J. Zimmermann, A. Kaszynski, E. Constant, and G. Microondes, J. Appl. Phys., 51, 1065, 1980. 2) C. Moglestue, IEEE Trans. Electron Devices, 32, 2092, 1985. 3) T. Kuhn, L. Reggiani, L. Varani, and V. Mitin, Phys. Rev. B, 42, 5702, 1990. 4) L. Varani, L. Reggiani, T. Kuhn, T. González, and D. Pardo, IEEE Trans. Electron Devices, 41, 1916, 1994. 5) J. P. Nougier, IEEE Trans. Electron Devices, 41, 2034, 1994. 6) E. Starikov, P. Shiktorov, V. Gruzinskis, L. Varani, J. C. Vaissiere, J. P. Nougier, and L. Reggiani, J. Appl. Phys., 79, 242, 1996. 7) T. González and D. Pardo, J. Appl. Phys., 73, 7453, 1993. 8) J. Makhoul, Proc. IEEE, 63, 561, 1975. 9) E. T. Jaynes, Proc. IEEE, 70, 939, 1982. 10) S. Haykin, B. W. Currie, and S. B. Kesler, Proc. IEEE 70, 953, 1982. 11) W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C. The Art of Scientific Computing, 2nd ed., Cambridge University Press, Cambridge, 1992. 12) C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation, Springer, Wien, 1989. 13) J. M. M. Pantoja and J. L. Sebastián, IEEE Trans. Electron Device Lett., 18, 258, 1997. 14) T. González, J. E. Velázquez, P. M. Gutiérrez, and D. Pardo, Appl. Phys. Lett., 60, 613, 1992. 15) J. Mateos, T. González, and D. Pardo, J. Appl. Phys., 77, 1564, 1995. 16) T. González, D. Pardo, L. Varani, and L. Reggiani, Semicond. Sci. Technol., 9, 580, 1994. 17) T. González, J. E. Velázquez, P. M. Gutiérrez, and D. Pardo, J. Appl. Phys., 72, 2322, 1992.
Collections