Publication:
A non-equilibrium thermodynamics model of multicomponent mass and heat transport in pervaporation processes

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-12
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
De Gruyter
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The framework of non-equilibrium thermodynamics (NET) is used to derive heat and mass transport equations for pervaporation of a binary mixture in a membrane. In this study, the assumption of equilibrium of the sorbed phase in the membrane and the adjacent phases at the feed and permeate sides of the membrane is abandoned, defining the interface properties using local equilibrium. The transport equations have been used to model the pervaporation of a water-ethanol mixture, which is typically encountered in the dehydration of organics. The water and ethanol activities and temperature profiles are calculated taking mass and heat coupling effects and surfaces into account. The NET approach is deemed good because the temperature results provided by the model are comparable to experimental results available for water-alcohol systems.
Description
© de Gruyter 2012.
UCM subjects
Unesco subjects
Keywords
Citation
[1] Wijmans, J. G. and Baker, R. W., The solution-diffusion model: A review, J. Membr. Sci., 107 (1995), 1–21. [2] Feng, X. and Huang, R. Y. M., Liquid separation by membrane pervaporation, Ind. Eng. Chem. Res., 16 (1997), 1048–1066. [3] Okada, T. and Matsuura, T., A new transport model for pervaporation, J. Membr. Sci., 59 (1991), 133–150. [4] Okada, T., Yoshikawa, M. and Matsuura, T., A study on the pervaporation of ethanol/water mixtures on the basis of pore flow model, J. Membr. Sci., 59 (1991), 151–168. [5] Okada, T. and Matsuura, T., Predictability of transport equations for pervaporation on the basis of pore-flow mechanism, J. Membr. Sci., 70 (1992), 163–175. [6] Hwang, S. T., Nonequilibrium thermodynamics of membrane transport, AIChE J., 50 (2004), 862–870. [7] Bedeaux, D. and Kjelstrup, S., Irreversible thermodynamics – A tool to describe phase transitions far from global equilibrium, Chem. Eng. Sci., 59 (2004), 109–118. [8] Kjelstrup, S. and de Koeijer, G. M., Transport equations for distillation of ethanol and water from entropy production rate, Chem. Eng. Sci., 58 (2003), 1147–1161. [9] Kuhn, J., Stemmer, R., Kapteijn, F., Kjelstrup, S. and Gross, J., A non-equilibrium thermodynamics approach to model mass and heat transport for water pervaporation through a zeolite membrane, J. Membr. Sci., 330 (2009), 388–398. [10] Inzoli, I., Simon, J. M., Kjelstrup, S. and Bedeaux, D., Thermal effects during adsorption of n-butane on a silicalite-1 membrane: A non-equilibrium molecular dynamics study, J. Colloid Interface Sci., 313 (2007), 563–573. [11] Kjelstrup, S. and Bedeaux, D., Non-Equilibrium Thermodynamics of Heterogeneous Systems, Series on Advances in Statistical Mechanics, Volume 16, World Scientific Publishing, Singapore, 2008. [12] Bolto, B., Hoang, M. and Xie, Z., A review of membrane selection for the dehydration of aqueous ethanol by pervaporation, Chem. Eng. Process., 50 (2011), 227–235. [13] Shao, P. and Huang, R. Y. M., Polymeric membrane pervaporation, J. Membr. Sci., 287 (2007), 162–179. [14] Chapman, P. D., Oliveira, T., Livingston, A. G. and Li, K., Membranes for the dehydration of solvents by pervaporation, J. Membr. Sci., 318 (2008), 5–37. [15] Xu, J., Kjelstrup, S., Bedeaux, D., Rosjorde, A. and Rekvig, L., Verification of Onsager’s reciprocal relations for evaporation and condensation using non-equilibrium molecular dynamics, J. Colloid Interface Sci., 299 (2006), 452–463. [16] Burshe, M. C., Sawant, S. B., Joshi, J. B. and Pangarkar, V. G., Sorption and permeation of binary water–alcohols systems through PVA membranes crosslinked with multifunctional crosslinking agents, Sep. Purif. Technol., 12 (1997), 145–156. [17] Varghese, J. G., Kittur, A. A., Rachipudi, P. S. and Kariduraganavar, M. Y., Synthesis, characterization and pervaporation performance of chitosang- polyaniline membranes for the dehydration of isopropanol, J. Membr. Sci., 364 (2010), 111–121. [18] Magalad, V. T., Supale, A. R., Maradur, S. P., Gokavi, G. S. and Aminabhavi, T. M., Preyssler type heteropolyacid-incorporated highly waterselective sodium alginate-based inorganic–organic hybrid membranes for pervaporation dehydration of ethanol, Chem. Eng. J., 159 (2010), 75–83. [19] Magalad, V. T., Gokavi, G. S., Raju, K. V. S. N. and Aminabhavi, T. M., Mixed matrix blend membranes of poly(vinyl alcohol)-poly(vinyl pyrrolidone) loaded with phosphomolybdic acid used in pervaporation dehydration of ethanol, J. Membr. Sci., 354 (2010), 150–161. [20] Kjelstrup, S., Glavatsky, K. and Phoroah, J., Dynamic membrane boundary conditions for transport of heat and water, Proceeding of Fundamentals and Developments of Fuel Cells, Nancy, 2008. [21] Platten, J. K., The Soret effect: A review of recent experimental results, J. Appl. Mech. Trans. ASME., 73 (2006), 5–15. [22] Fang, G. and Ward, C. A., Temperature measured close the interface of an evaporating liquid, Phys. Rev. E., 59 (1999), 417–428. [23] Simon, J. M., Kjelstrup, S., Bedeaux, D. and Hafskjold, B., Thermal flux through a surface of n-octane. A non-equilibrium molecular dynamics study, J. Phys. Chem. B., 108 (2004), 7186–7195. [24] Rautenbach, R. and Albrecht, R., On the behavior of asymmetric membranes in pervaporation, J. Membr. Sci., 19 (1984), 1–22. [25] Rautenbach, R. and Albrecht, R., The separation potential of pervaporation. Part 2. Process design and economics, J. Membr. Sci., 25 (1985), 25–54. [26] Villaluenga, J. P. G. and Cohen, Y., Numerical model of non-isothermal pervaporation in a rectangular channel, J. Membr. Sci., 260 (2005), 119–130. [27] Vie, P. J. S. and Kjelstrup, S., Thermal conductivities from temperature profiles in the polymer electrolyte fuel cell, Electrochim. Acta, 49 (2004), 1069–1077. [28] Burheim, O., Vie, P. J. S., Pharoah, J. G. and Kjelstrup, S., Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell, J. Power Sources, 195 (2010), 249–256. [29] Villaluenga, J. P. G., Seoane, B., Barragán, V. M. and Ruiz Bauzá, C., Thermo-osmosis of mixtures of water and methanol through a Nafion membrane, J. Membr. Sci., 274 (2006), 116–122. [30] Jiraratananon, R., Chanachai, A. and Huang, R. Y. M., Pervaporation dehydration of ethanol–water mixtures with chitosan/hydroxyethylcellulose (CS/HEC) composite membranes. II. Analysis of mass transport, J. Membr. Sci., 199 (2002), 211–222. [31] Schaetzel, P., Vauclair, C., Nguyen, Q. T. and Bouzerar, R., A simplified solution-diffusion theory in pervaporation: The total solvent volume fraction model, J. Membr. Sci., 244 (2004), 117–127. [32] Yoshikawa, M., Masaki, K. and Ishikawa, M., Pervaporation separation of aqueous organic mixtures through agarose membranes, J. Membr. Sci., 205 (2002), 293–300. [33] Drioli, E., Stankiewicz, A. I. and Macedonio, F., Membrane engineering in process intensification. An overview, J. Membr. Sci., 380 (2011), 1–8.
Collections