Publication:
Cathodoluminescence studies of growth and process-induced defects in bulk gallium antimonide

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1995-10-30
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Inst Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The homogeneity and luminescence properties of undoped bulk GaSb have been studied by the cathodoluminescence (CL) technique in the scanning electron microscope. CL images have revealed a nonuniform distribution of native defects in GaSb wafers prepared from as-grown single crystals. Postgrowth annealing in vacuum, gallium, and antimony atmospheres has been performed to obtain more accurate information about the defect structure in this material. In general, on annealing, homogeneous distribution of impurities is observed throughout the wafers. CL spectra show that a luminescence band (centered at 756 meV) is enhanced by annealing in a gallium atmosphere, suggesting that Ga atoms play an important role in the formation of this acceptor center. The 756 meV peak has been attributed to a transition from conduction band to an acceptor center comprised of Ga-Sb or a related complex. Interestingly, localized crystallization at the subgrain boundaries seems to occur by annealing in Ga atmosphere.
Description
© 1991 All Rights Reserved. This work has been supported by the DGICYT (Project No. PB93-1256) and ESP95-0148. One of the authors (P.S.D.) gratefully thanks CSIR (India) for the award of the Senior Research Fellowship and UAM, Madrid, Spain, for the visiting scientist fellowship.
Unesco subjects
Keywords
Citation
1. M.G. Drexhage and C. T. Moyniham, Sci Am. 259, 76 (1988). 2. A. G. Milnes and A. Y.Polyakov, Solid State electron, 36, 803 1993). 3. A. Sasaki, M. Nishiuma, and Y. Takeda, Jpn. J. App. 19,1695 (1980). 4. M. J. Chergn,, G. B. Stringfellow, D. W. Kisker, A. K. Srivastava, and J. L. Zyskind, App. Phys. Lett. 48 419 (1986). 5. C. Woelk and K. W. Benz, J. Crist. Growth 27, 177 (1977). 6. E. T. R. Chidley , S. K. Haywood, A. B. Henrriques, N. J. Mason R. J. Nicholas, and P. J. Walker, Semicond. Sci. Technol. 6, 45 (1991). 7. T. M. Rossi, D. A. Collins, D. H, Chow, and T. C. McGill Appl. Phys. Lett. 57, 2256 (1990). 8. P. S. Dutta, K. S. Sangunni, H. L. Bhat, and V. Kumar, J. Cryst. Growth 141, 44 (1994). 9. C. Anayama, T. Tanahashi, H. Kuwatsuka, S. Nishiyama, S. Isozumi, and K.. Nakajima, Appl. Phys. Lett. 56, 239 (1990). 10. M. C. Wu, C. W. Chen and C. C. chen, J. Appl. Phys. 72, 1101 (1992). 11. B. Mémdez and J. Piqueras, J. Appl. Phys. 69, 2776 (1991). 12. W. Jakowetz, W. Rulhe, K. Breuninger, and M. pilkuhn, Phys. Status Solidi A 12, 169 (1972). 13. M. Lee, D. J. Nicholas, k. E. Singer, and B. Hamilton, J. Appl. Phys. 59, 2895 (1986). 14 M. C. Wu and C. C. Chen, J. Appl. Phys. 72, 4275 (1992). 15. D. Weiler and H. Mehrer, Philos. Mag. A. 49, 309 (1984). 16. W. J. Jiang, Y. M. Sun, and M. C. Wu J. Appl. Phys. 77, 1725 (1995). 17. G. Benz and R. Conradt, Phys Rev. B. 16, 843 (1977).
Collections