Publication:
Numerical model of non-isothermal pervaporation in a rectangular channel

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2005-09-01
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier B. V.
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
A numerical model of non-isothermal pervaporation was developed to investigate the development of the velocity, concentration and temperature fields in rectangular membrane module geometry. The model consists of the coupled Navier-Stokes equations to describe the flow field, the energy equation for the temperature field, and the species convection-diffusion equations for the concentration fields of the solution species. The coupled nonlinear transport equations were solved simultaneously for the velocity, temperature and concentration fields via a finite element approach. Simulation test cases for trichloroethylene/water, ethanol/water and iso-propanol/water pervaporation, under laminar flow conditions, revealed temperature drop axially along the module and orthogonal to the membrane surface. The nonlinear character of the concentration and temperature boundary-layers are most significant near the membrane surface. Estimation of the mass transfer coefficient assuming isothermal assumption conditions can significantly deviate from the non-isothermal predictions. For laminar conditions, predictions of the feed-side mass transfer coefficient converged to predictions from the classical Leveque solution as the feed temperature approached the permeate temperature.
Description
© 2005 Elsevier B.V.
UCM subjects
Unesco subjects
Keywords
Citation
[1] H.O.E. Karlsson, G. Trägård, Pervaporation of dilute organic–water mixtures. A literature review on modeling studies and applications to aroma compound recovery, J. Membr. Sci. 76 (1993) 121–146. [2] C. Staudt-Bickel, R.N. Lichtenthaler, Pervaporation thermodynamic properties and selection of membrane polymers, Polym. Sci. 36 (1994) 1628–1646. [3] W. Ji, S.K. Sikdar, Pervaporation adsorbent-filled membranes, Ind. Eng. Chem. Res. 35 (1996) 1124–1132. [4] A. Jonquieres, R. Clement, P. Lochon, J. Neel, M. Dresch, B. Chretien, Industrial state-of-the-art of pervaporation and vapor permeation in the western countries, J. Membr. Sci. 206 (2002) 87–117. [5] F. Lipnizki, R.W. Field, P.K. Ten, Pervaporation-based hybrid process: a review of process design, applications and economics, J. Membr. Sci. 153 (1999) 183–210. [6] N. Wynn, Pervaporation comes to age, Chem. Eng. Progr. 97 (10) (2001) 66–72. [7] R. Rautenbach, S. Klatt, J. Vier, State of the art of pervaporation: 10 years of industrial pervaporation, in: Proceedings of the Sixth International Conference on the Pervaporation Process in Chemical Industry, Ottawa, Canada, September 27–30, 1992. [8] R.Y.M. Huang (Ed.), Pervaporation Membrane Separation Process, Elsevier, Amsterdam, The Netherlands, 1991. [9] W.S.W. Ho, K.K. Sirkar (Eds.), Membrane Handbook, Chapman & Hall, New York, 1992. [10] X. Feng, R.Y.M. Huang, Liquid separation by membrane pervaporation: a review, Ind. Eng. Chem. Res. 36 (1997) 1048–1066. [11] S.P. Nunes, K.-V. Peinemann (Eds.), Membrane Technology in the Chemical Industry, VCH, Weinheim, 2001. [12] R. Rautenbach, R. Albrecht, The separation potential of pervaporation. Part 2. Process design and economics, J. Membr. Sci. 25 (1985) 25–54. [13] R. Rautenbach, R. Albrecht, Separation of organic binary mixtures by pervaporation, J. Membr. Sci. 7 (1980) 203–223. [14] A. Ito, Y. Feng, H. Sasaki, Temperature drop of feed liquid during pervaporation, J. Membr. Sci. 133 (1997) 95–102. [15] R. Rautenbach, R. Albrecht, On the behavior of asymmetric membranes in pervaporation, J. Membr. Sci. 19 (1984) 1–22. [16] R. Rautenbach, R. Albrecht (Eds.), Membrane Processes, Wiley, New York, 1989, pp. 400–404. [17] C.H. Gooding, Modeling of some relatively simple concepts on the heat transfer aspects of pervaporation, in: R. Bakish (Ed.), Proceedings of the First International Conference on the Pervaporation Processes in the Chemical Industry, Bakish Materials Corporation, Englewood, NJ, 1986, pp. 171–181. [18] H.O.E. Karlsson, G. Trägård, Heat transfer in pervaporation, J. Membr. Sci. 119 (1996) 295–306. [19] G.J.S. van der Gulik, J.G. Wijers, J.T.F. Keurentjes, Measurement of 2D-temperature distributions in a pervaporation membrane module using ultrasonic computer tomography and comparison with computational fluid dynamics calculations, J. Membr. Sci. 204 (2002) 111–124. [20] Z. Yuzhong, Z. Keda, X. Jiping, Preferential sorption of modified PVA membrane in pervaporation, J. Membr. Sci. 80 (1993) 297–308. [21] J. Rhim, R.Y.M. Huang, Prediction of pervaporation separation characteristics for the ethanol–water–nylon-4 membrane system, J. Membr. Sci. 70 (1992) 105–118. [22] C. Dotremont, B. Brabants, K. Geeroms, J. Mewis, C. Vandecateele, Sorption and diffusion of chlorinated hydrocarbons in silicalite-filled PDMS membranes, J. Membr. Sci. 104 (1995) 109–117. [23] C.K. Yeom, B.S. Kim, J.M. Lee, Precise on-line measurements of a permeation transients through dense polymeric membranes using a new permeation apparatus, J. Membr. Sci. 161 (1999) 55–66. [24] J. Smart, R.C. Schucker, D.R. Lloyd, Pervaporative extraction of volatile organic compounds from aqueous systems with use of a tubular transverse flow module. Part I. Composite study, J. Membr. Sci. 147 (1998) 137–157. [25] F. Xianshe, R.Y.M. Huang, Estimation of activation energy for permeation in pervaporation process, J. Membr. Sci. 118 (1996) 127–131. [26] W. Ji, S.K. Sikdar, S.-T. Hwang, Modeling of multicomponent pervaporation for removal of volatile organic compounds from water, J. Membr. Sci. 93 (1994) 1–19. [27] M.H.V. Mulder, C.A. Smolders, On the mechanism of separation of ethanol/water mixtures by pervaporation. I. Calculations of concentration profiles, J. Membr. Sci. 17 (1984) 289–307. [28] M.H.V. Mulder, T. Franken, C.A. Smolders, Preferential sorption versus preferential permeability in pervaporation, J. Membr. Sci. 22 (1985) 155–173. [29] G. Qunhui, H. Ohya, Y. Negishi, Investigation of the permselectivity of chitosan membrane used in pervaporation separation. II. Influences of temperature and membrane thickness, J. Membr. Sci. 98 (1995) 223–232. [30] R.Y.M. Huang, P. Shao, G. Nawawi, X. Feng, C.M. Burns, Measurements of partition, diffusion coefficients of solvents in polymer membranes using rectangular thin-channel column inverse gas chromatography, J. Membr. Sci. 188 (2001) 205–218. [31] M. Yoshikawa, K. Masaki, M. Ishikawa, Pervaporation separation of aqueous organic mixtures through agarose membranes, J. Membr. Sci. 205 (2002) 293–300. [32] M.C. Burshe, S.B. Sawant, J.B. Joshi, V.G. Pangarkar, Sorption and permeation of binary water-alcohol systems through PVA membranes crosslinked with multifunctional crosslinking agents, Sep. Sci. Technol. 12 (1997) 145–156. [33] E.E.B. Meuleman, B. Bosch, M.H.V. Mulder, H. Strathmann, Modeling of liquid/liquid separation by pervaporation: toluene from water, AIChE J. 45 (1999) 2153–2160. [34] J.G. Wijmans, A.L. Athayde, R. Daniels, J.H. Ly, H.D. Kamaruddin, I. Pinnau, The role of boundary layers in the removal of volatile organic compounds from water by pervaporation, J. Membr. Sci. 109 (1996) 135–146. [35] R. Raghunath, S.-T. Hwang, General treatment of liquid-phase boundary layer resistance in the pervaporation of dilute aqueous organics through tubular membranes, J. Membr. Sci. 75 (1992) 29–46. [36] D.R. Lide, CRC Handbook of Chemistry and Physics, 81st ed., CRC Press, Boca Raton, 2000. [37] J. Timmermans, Physicochemical Constants of Pure Organic Compounds, Elsevier, Amsterdam, 1965. [38] F.A. Missenard, Additive method for the determination of molar heat capacities of liquids, Compt. Rend. 260 (1965) 5521–5523. [39] J.W. Miller, J.J. McGinley, C.L. Yaws, Chem. Eng. 83 (1976) 133. [40] T.E. Daubert, R.P. Danner, H.M. Sibul, C.C. Stebbins, Physical and Thermodynamics Properties of Pure Compounds: Data Compilation, Taylor and Francis, Bristol, PA, 1994. [41] K.N. Marsh (Ed.), Recommended Reference Materials for the Realization of Physicochemical Properties, Blackwell Scientific Publications, Oxford, 1987. [42] R.C. Reid, J.M. Prausnitz, B.E. Poling, Properties of Gases and Liquids, 4th ed., McGraw Hill, New York, 1988. [43] V. Majer, V. Svoboda, Enthalpies of Vaporization of Organic Compounds, Blackwell Scientific Publications, Oxford, 1985. [44] C.L. Yaws, J.W. Miller, P.N. Shah, G.R. Schorr, P.M. Patel, Chem. Eng. 83 (1976) 153. [45] D.S. Viswanath, G. Natarajan, Data Book on the Viscosity of Liquids, Hemisphere Publishing Corporation, New York, 1989. [46] N.B. Vargaftik, Tables of Thermophysical Properties of Liquids and Gases, 2nd ed., Wiley, New York, 1975. [47] A.S. Teja, P. Rice, Chem. Eng. Sci. 36 (1981) 7. [48] A.S. Teja, P. Rice, Ind. Eng. Chem. Fundam. 20 (1981) 77. [49] M.T. Tyn, W.F. Calus, Temperature and concentration dependence of mutual diffusion coefficients of some binary liquid systems, J. Chem. Eng. Data 20 (1975) 310–316. [50] Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, 6th ed., vol. II/5a, Springer-Verlag, 1969. [51] A. Vignes, Ind. Eng. Chem. Fundam. 5 (1966) 189. [52] C.R. Wilke, P. Chang, AIChE J. 1 (1955) 264. [53] K.M. Song, W.H. Hong, Dehydration of ethanol and isopropanol using tubular type cellulose acetate membranes with ceramic support in pervaporation process, J. Membr. Sci. 123 (1997) 27–33. [54] S.Y. Nam, H.J. Chun, Y.M. Lee, Pervaporation of water–isopropanol mixture using carboxymethylated poly(vinyl alcohol) composite membranes, J. Appl. Polym. Sci. 72 (1999) 241–249. [55] I. Cabasso, Z.Z. Liu, The permselectivity of ion-exchange membranes for non-electrolyte liquid membranes. I. Separation of alcohol/water mixtures with nafion hollow fiber, J. Membr. Sci. 24 (1985) 101–109. [56] F.M. White, Fluid Mechanics, 3rd ed., McGraw Hill, New York, 1994.
Collections