Publication:
Heat and mass transfer in vacuum membrane distillation

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2004-02-04
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In the membrane distillation (MD) literature, the heat transfer coefficients of the boundary layers are usually estimated from well known heat transfer empirical correlations developed for non-porous and rigid heat exchangers. A difference between the mechanism of heat transfer in MD systems, which is coupled with transmembrane mass transfer, and the mechanism of heat transfer in "pure" heat exchangers is expected to exist. Vacuum membrane distillation has been experimentally studied in a capillary membrane module and the heat transfer coefficients have been evaluated in both the lumen and the shell side of the membrane module. A critical review of the most frequently used heat transfer empirical correlations in MD systems is presented. Finally, the experimental results obtained in this paper are compared to those of literature, in order to test their applicability in membrane distillation systems.
Description
© 2003 Elsevier Ltd. Economical support from the CICYT is acknowledged.
UCM subjects
Unesco subjects
Keywords
Citation
[1] K.W. Lawson, D.R. Lloyd, Membrane distillation, J. Membrane Sci. 124 (1997) 1–25. [2] J.I. Mengual, L. Peña, Membrane distillation, Colloid Surf. Sci. 1 (1997) 17–29. [3] R.W.A. Schofield, A.G. Fane, C.J.D. Fell, Heat and mass transfer in membrane distillation, J. Membrane Sci. 33 (1987) 299–313. [4] M. Khayet, M.P. Godino, J.I. Mengual, Theory and experiments on sweeping gas membrane distillation, J. Membrane Sci. 165 (2) (2000) 261–272. [5] M. Khayet, M.P. Godino, J.I. Mengual, Nature of flow on sweeping gas membrane distillation, J. Membrane Sci. 170 (2) (2000) 243–255. [6] E.A. Mason, A.P. Malinauskas, Gas Transport in Porous Media: The Dusty-Gas Model, Elsevier, Amsterdam, 1983, pp. 30–42. [7] S. Bandini, A. Saavedra, G.C. Sarti, Vacuum membrane distillation: experiments and modeling, AIChE J. 43 (1997) 398–408. [8] J.M. Ortiz de Z_arate, F. García López, J.I. Mengual, Temperature polarisation in non-isothermal mass transport through membranes, J. Chem. Soc.- Faraday Trans. 86 (16) (1990) 2891–2896. [9] L. Martínez Díez, M.I. Vázquez González, Temperature polarisation in mass transport through hydrophobic porous membranes, AIChE J. 42 (1996) 1844–1852. [10] S. Bandini, C. Gostoli, G.C. Sarti, Separation efficiency in vacuum membrane distillation, J. Membrane Sci. 73 (1992) 217–229. [11] K.W. Lawson, D.R. Lloyd, Membrane distillation: I module design and performance evaluation using vacuum membrane distillation, J. Membrane Sci. 120 (1996) 111–121. [12] M. Khayet, M.P. Godino, J.I. Mengual, Modeling transport mechanism through a porous partition, J. Non-Equilibrium Thermodyn. 26 (2001) 1–14. [13] A. Velázquez, J.I. Mengual, Temperature polarisation coefficients in membrane distillation, Indust. Eng. Chem. Res. 34 (2) (1995) 585–590. [14] F. Kreith, M.S. Bohn, Principle of Heat Transfer, fifth ed., PWS Publish. Comp., Boston, 1997, pp. 445–497. [15] J.P. Holman, Heat Transfer, seventh ed., McGraw-Hill Book Company, Singapore, 1989, pp. 271–321. [16] G.C. Sarti, C. Gostoli, S. Bandini, Extraction of organic components from aqueous streams by vacuum membrane distillation, J. Membrane Sci. 80 (1993) 21–33. [17] M. Gryta, M. Tomaszewska, Heat transport in the membrane distillation process, J. Membrane Sci. 144 (1998) 211–222. [18] M. Tomaszewska, M. Gryta, A.W. Morawski, Mass transfer of HCL and H2O across the hydrophobic membrane during membrane distillation, J. Membrane Sci. 166 (2000) 149–157. [19] F.A. Banat, A. Abu Al-Rub, R. Jumah, M. Al-Shamag, Modeling of desalination using tubular direct contact membrane distillation modules, Separat. Sci. Technol. 34 (11) (1999) 2191–2206. [20] L. Martínez Díez, M.I. Vázquez González, Temperature and concentration polarisation in membrane distillation of aqueous salt solutions, J.Membrane Sci. 156 (1999) 265–273. [21] S. Kimura, S.I. Nakao, S.I. Shimatani, Transport phenomena in membrane distillation, J. Membrane Sci. 33 (1987) 285–298. [22] V. Ugrozov, I.B. Elkina, A selectivity model for membrane distillation of solutions of non-volatile salts, Russ. J. Phys. Chem. 70 (1996) 1670–1674. [23] L. Martínez Díez, M.I. Vázquez González, Effect of polarization on mass transport through hydrophobic porous membranes, Indust. Eng. Res. 37 (1998) 4128–4135. [24] Y. Fujii, S.K. Hidestsugu Iwatani, M. Aoyama, Selectivity and characteristics of direct contact membrane distillation type experiment: I. permeability and selectivity through dried hydrophobic fine porous membranes, J. Membrane Sci. 72 (1992) 53–72. [25] H. Gröber, S. Erk, Transmisión de Calor, 1st Spanish ed., Selecciones Científicas, Madrid, 1967, pp. 256–288. [26] S. Bandini, G.C. Sarti, Heat and mass transport resistances in vacuum membrane distillation per drop, AIChE J. 45 (1999) 1422–1433. [27] M.P. Godino, L. Peña, J.I. Mengual, Membrane distillation: theory and experiments, J. Membrane Sci. 121 (1996) 83–93. [28] E. Drioli, Y. Wu, Membrane distillation: an experimental study, Desalination 53 (1985) 339–346. [29] C. Gostoli, Thermal effects in osmotic distillation, J. Membrane Sci. 163 (1999) 75–91. [30] E.C. Guyer, D.L. Brownell, Handbook of Applied Thermal Design, McGraw-Hill Book Company, New York, 1989, pp. (1) 31–47.
Collections