Publication:
Influence of the electron-lattice coupling for Cr^3^+ ions in Nb^5^+ site into congruent co-doped LiNbO_3: Cr^3^+: ZnO crystal

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2003-08
Authors
Torchia, Gustavo Adrián
Vaveliuk, Pablo
Tocho, Jorge Omar
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Pergamon-Elsevier Science LTD
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
This paper shows the important role that plays the electron-lattice coupling to represent correctly the energy levels of Cr^3^+ ions in Nb^5^+ site into congruent LiN_bO_3 crystals doped with 5.3% of ZnO. Racah's parameters: and crystal field intensity were determined and the Tanabe–Sugano's diagram was constructed. The characteristics of the absorption and emission spectra of Cr^3^+ ions in Nb^5^+ site have been explained in terms of the Configurational Co-ordinate model in the harmonic approximation. Huang–Rhys parameter, S=3.5 and the breathing phonon energy, are also reported in this work. Different values of breathing phonon for Cr^3^+ in Nb^5^+ site than in Li+ site could explain the higher luminescent quantum efficiency of Cr^3^+ ions located in Nb^5^+ site in LiN_bO_3 crystals.
Description
© 2003 Elsevier Ltd. G.A. Torchia wishes to acknowledge the CONICET (Argentina) for his fellowship.
Keywords
Citation
[1] T.R. Volk, N.M. Rubinina, V.I.M. Wöhlecke, J. Opt. Soc. Am. B 11 (1994) 1681–1687. [2] D. Jaque, J. Capmany, J. García-Solé, A. Brenier, G. Boulon, Appl. Phys. B 70 (2000) 11–14. [3] E. Montoya, J. Capmany, L.E. Bausá, T. Kellner, A. Diening, G. Haber, Appl. Phys. Lett. 74 (21) (1999) 3113–3115. [4] Y. Qui, J. Phys.: Condens. Matter 5 (1993) 2041. [5] A. Martín, F.J. López, F. Agulló-López, J. Phys.: Condens. Matter 4 (1992) 847–853. [6] A. Kaminska, J.E. Dmochowski, A. Suchoki, J. Garcia-Sole, F. Jaque, L. Arizmendi, Phys. Rev. B 60 (1999) 7707–7710. [7] P. Macfarlane, K. Holladay, J.F.H. Nicholls, B. Henderson, J. Phys.: Condens. Matter 7 (1995) 9643–9656. [8] G.M. Salley, S.A. Basun, G.F. Imbusch, A.A. Kaplyanskii, S. Kapphan, R.S. Meltzer, U. Happek, J. Lumin. 83–84 (1999) 423–427. [9] F. Lhomme, P. Bourson, G. Boulon, Y. Guyot, M.D. Fontana, Eur. Phys. J. Appl. Phys. 20 (2002) 29–40. [10] T.P.J. Han, F. Jaque, V. Bermudez, E. Dieguez, J. Phys.: Condens. Matter 15 (2003) 281–290. [11] G. Corradi, H. Soethe, J.M. Spaeth, K. Polgár, J. Phys.: Condens. Matter 3 (1991) 1901–1908. [12] J. Diaz-Caro, J. García-Solé, D. Bravo, J.A. Sanz-García, F.J. López, F. Jaque, Phys. Rev. B 54 (18) (1996) 13042–13046. [13] G.A. Torchia, J.A. Sanz-García, J. Díaz-Caro, T. Han, F. Jaque, Chem. Phys. Lett. 288 (1998) 65–70. [14] G.A. Torchia, J.O. Tocho, F. Jaque, J. Phys.: Condens. Matter 12 (41) (2000) 8927–8932. [15] A. Kling, J.C. Soares, M.F. da Silva, J.A. Sanz-García, E. Dieguez, F. Agulló-López, Nucl. Instrum. Meth. Phys. Res., Sec. B—Beam Interact. Mater. Atoms 136–138 (1998) 426–430. [16] G.A. Torchia, J.A. Sanz-García, F.J. López, D. Bravo, J. García-Solé, F. Jaque, H.G. Gallagher, T.P.J. Han, J. Phys.: Condens. Matter 10 (1998) L341–L345. [17] Y. Tanabe, S. Sugano, J. Phys. Soc. Jpn 9 (1954) 753. [18] S.J. Sugano, Y. Tanabe, H. Kamikura, Multiplets of Transitions Metals Ions in Crystals, Academic Press, New York, 1970. [19] B. Henderson, G.F. Imbush, Optical Spectroscopy of Inorganic Solids, Oxford Science Publications, 1989. [20] G.A. Torchia, O. Martinez Matos, P. Vaveliuk, J.O. Tocho, J. Phys.: Condens. Matter 13 (30) (2001) 6577–6583. [21] E. Camarillo, J.O. Tocho, I. Vergara, E. Dieguéz, J. García-Solé, F. Jaque, Phys. Rev. B 45 (1990) 4600–4604. [22] G.A. Torchia, J.A. Muñoz, F. Cusso, F. Jaque, J.O. Tocho, J. Lumin. 92 (2001) 317–322. [23] A. Ridah, P. Bourson, M.D. Fontana, G. Malovichko, J.Phys.: Condens. Matter 9 (1997) 9687–9693.
Collections