Publication:
Fibonacci superlattices of narrow-gap III-V semiconductors

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1995-06
Authors
Méndez Martín, Bianchi
Roy, C.L.
Khan, A.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
IOP Publishing LTD
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We report the theoretical electronic structure of Fibonacci superlattices of narrow-gap III-V semiconductors. The electron dynamics is accurately described within the envelope-function approximation in a two-band model. Quasiperiodicity is introduced by considering two different Ill-V semiconductor layers and arranging them according to the Fibonacci series along the growth direction. The resulting energy spectrum is then found by solving exactly the corresponding effective-mass (Dirac-like) wave equation using tranfer-matrix techniques. We find that a self-similar electronic spectrum can be seen in the band structure. Electronic transport properties of samples are also studied and related to the degree of spatial localization of electronic envelope functions via the Landauer resistance and Lyapunov coefficient. As a working example, we consider type II InAs/GaSb superlattices and discuss in detail our results in this system.
Description
© 1995 IOP Publishing Ltd. The authors thank A SBnchez for a critical reading of the manuscript. Work at Madrid is supported by CICYT (Spain) under project MAPS-0325. Arif Khan is grateful to CSIR, India, for awarding him a senior research fellowship.
Unesco subjects
Keywords
Citation
[1] Kohmolo M, Kadanoff L P and Tang C 1983 Phys. Rev. Lett 50 1870 [2] Ostlund S and Pandit R 1984 Phys. Rev. B 29 1394 [3] Merlin R, Bajema K, Clarke R, Juang F-Y and Bhatacharya P K 1985 Phys. Rev. Lerr. 55 1768 [4] Todd J, Merlin R. Clarke R. Mohanty K M and Axe J D 1986 Phys. Rev. Lett. 57 1157 [5] Laruelle F and Etienne B 1988 Phys. Rev. B 37 4816 [6] Maciá E. Domínguez-Adame F and Sánchez A 1994 Phvs. Rev. E50 R679 [7] Katsumoto S. Sano N and Kobayashi S 1993 Solid State Commun 85 223 [8] Dominguez-Adame F and Sánchez A 1991 Phys. Leu. 159A 153 [9] Maciá E, Domínguez-Adame F and Sánchez A 1994 Phys. Rev. B 49 9503 [10] Chakrabarti A, Karmakar S N and Moitra R K 1992 Phys. Left. 168A 301 [11] Bastard G 1989 Wave Mechanics Applied to Semiconducfor Hetemstructures (Paris: Editions de Physique) [12] Domínguez-Adame F and MCndez B 1994 Semicond. Sci. Technol. 9 1358 [13] Callaway J 1991 Quantum Theory of rhe SolidState (New York Academic) p 36 [14] Roy C Land Khan A 1994 J. Phys.: Condens. Matter 6 4493 [151 Glasser M L and Davison S G 1970 Inr. J. Quanrum Chem IIIs 867 [16] McKellar B H J and Stephenson G J 1987 Phys. Rev. C 35 2262 [17] Dominguez-Adame F 1989 J. Phys.: Condens. Matrer 1 109 [18] Roy C L and Khan A 1993 1 Phys.: Condens. Marer 5 7701 [19] Roy C L and Khan A 1994 Phys. Rev. B 49 14979 [2O] Landauer R 1957 1BM J. Res. Dev. 1 223 [211 Roy C L and Basu C 1992 Phys. Rev. B 45 14293 [22] Beresford R 1993 Semicond. Sci. Echnol. 8 1957 [23] Sánchez A, Maciá E and Domínguez-Adame F 1994 Phys. Rev. B 49 147 [24] Kirkman P D and Pendry J B 1984 J. Phys. C: Solid State Phys. 17 4327 [25] Söderstrom J R, Chow D H and McGll T C 1989 Appl.Phys. Lett 55 1094 [26] Gaultieri G. S. Schwartz G. P., Nuzzo R. G. Malik R. J. and Walker 1 F 1987 J. AppL Phys. 61 5337 [27] Chang L L and Esaki L 1980 Su$ Sci. 98 70 [28] Kohmoto M 1983 Phys. Rev. Lerr. 51 1198 [291 Bovier A and Ghez J-M 1993 Commim. Math. Phys. 158 45
Collections