Publication:
Optical fiber interferometer array for scanless Fourier-transform spectroscopy

Research Projects
Organizational Units
Journal Issue
Abstract
We report a spatial heterodyne Fourier-transform spectrometer implemented with an array of optical fiber interferometers. This configuration generates a wavelength-dependent stationary interferogram from which the input spectrum is retrieved in a single shot without scanning elements. Furthermore, fabrication and experimental deviations from the ideal behavior of the device are corrected by spectral inversion algorithms. The spectral resolution of our system can be readily scaled up by incorporating longer optical fiber delays, providing a pathway toward surpassing current spectroscopy resolution limits.
Description
© 2013 Optical Society of America. Financial support from the National Research Council of Canada and Spanish Ministry of Economy (TEC2008-04105 and TEC2011-23629) is acknowledged.
Keywords
Citation
1. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, 2007). 2. N. De Oliveira, M. Roudjane, D. Joyeux, D. Phalippou, J. C. Rodier, and L. Nahon, Nat. Photonics 5, 149 (2011). 3. E. Schwartz, S. G. Lipson, and E. N. Ribak, Astron. J. 144, 71 (2012). 4. S. Albert, K. K. Albert, and M. Quack, Handbook of High-Resolution Spectroscopy (Wiley, 2011). 5. J. Mandon, G. Guelachvili, and N. Picqué, Nat. Photonics 3, 99 (2009). 6. A. A. Michelson and E. Morley, Am. J. Sci. 34, 333 (1887). 7. P. Jacquinot, J. Opt. Soc. Am. 44, 761 (1954). 8. G. A. Mourou, G. Korn, W. Sandner, and J. L. Collier, Extreme Light Infrastructure Whitebook (THOSS Media GmbH, 2011). 9. S. Albert, K. K. Albert, P. Lerch, and M. Quack, Faraday Discuss. 150, 71 (2011). 10. T. Wilken, G. Lo Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. G. Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, Nature 485, 611 (2012). 11. Corning SMF-28e+ LL Optical Fiber, 2011, http://www.corning.com/WorkArea/showcontent.aspx?id=49145 . 12. P. Cheben, I. Powell, S. Janz, and D.-X. Xu, Opt. Lett. 30, 1824 (2005). 13. J. M. Harlander, F. L. Roesler, J. G. Cardon, C. R. Englert, and R. R. Conway, Appl. Opt. 41, 1343 (2002). 14. J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, IEEE Photon. Technol. Lett. 17, 855 (2005). 15. M. Florjańczyk Miroslaw, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, Opt. Express 15, 18176 (2007). 16. K. Okamoto, H. Aoyagi, and K. Takada, Opt. Lett. 35, 2103 (2010). 17. M. Florjańczyk, C. Alonso-Ramos, P. Bock, A. Bogdanov, P. Cheben, Í. Molina-Fernández, S. Janz, B. Lamontagne, A. Ortega-Moñux, A. Scott, K. Sinclair, B. Solheim, and D.-X. Xu, Opt. Quantum Electron. 44, 549 (2012). 18. A. V. Velasco, P. Cheben, P. J. Bock, A. Delâge, J. H. Schmid, J. Lapointe, S. Janz, M. L. Calvo, D.-X. Xu, M. Florjańczyk, and M. Vachon, Opt. Lett. 38, 706 (2013). 19. P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, Opt. Express 15, 2299 (2007). 20. V. I. Kopp and A. Z. Genack, Nat. Photonics 5, 470 (2011). 21. K. Takada, H. Aoyagi, and K. Okamoto, Opt. Lett. 36, 1044 (2011). 22. G. H. Golub and C. Reinsch, Numer. Math. 14, 403 (1970).
Collections