Publication:
Reconciling modeled and observed temperature trends over Antarctica

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-08-28
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Geophysical Union
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Over the last three decades, ozone depletion over Antarctica has affected temperature and winds in the lower stratosphere, and even in the troposphere and at the surface. The second Chemistry Climate Model Validation activity (CCMVal2) concluded that chemistry-climate models simulate stratospheric cooling that is too large compared to observations, even though the modeled and observed ozone trends are similar. However, these comparisons were based only on radiosonde data available for 1969-1998. Here, we investigate trends in the Southern Hemisphere polar cap in the latest version of the Community Earth System Model (CESM1) with its high-top atmospheric component, WACCM4, fully coupled to an ocean model. We compare model trends with observations for different periods and with other modeling studies to show much better agreement with more recent data, and conclude that the discrepancy between observed trends and those calculated by high-top models may not be as large as previously reported.
Description
© 2012. American Geophysical Union. N. Calvo was partially supported by the Advanced Study Program from the National Center for Atmospheric Research (ASP-NCAR) and by the Spanish Ministry of Science and Innovation through the CGL2008-05968-C02-01 project. NCAR is sponsored by the U.S. National Science Foundation.
Keywords
Citation
Cionni, I., et al. (2011), Ozone database in support of CMIP5 simulations: Results and corresponding radiative forcing, Atmos. Chem. Phys. Discuss., 11, 10,875–10,933, doi:10.5194/acpd-11-10875-2011. Dee, D. P., et al. (2011), The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137, 553–597, doi:10.1002/qj.828. Eyring, V., T. G. Shepherd, and D. W. Waugh (Eds.) (2010), SPARC report on the evaluation of chemistry climate models, SPARC Rep. 5, World Clim. Res. Programme, World Meteorol. Organ., Geneva, Switzerland. [Available at http://www.sparc-climate.org/publications/sparc-reports/.] Fu, Q., S. Solomon, and P. Lin (2010), On the seasonal dependence of tropical lower-stratospheric temperature trends, Atmos. Chem. Phys., 10, 2643–2653, doi:10.5194/acp-10-2643-2010. Garcia, R. R., D. Marsh, D. E. Kinnison, B. Boville, and F. Sassi (2007), Simulations of secular trends in the middle atmosphere, 1950–2003, J. Geophys. Res., 112, D09301, doi:10.1029/2006JD007485. Gent, P. R., et al. (2011), The Community Climate System Model version 4, J. Clim., 24, 4973–4991, doi:10.1175/2011JCLI4083.1. Gillett, N. P., and D. W. J. Thompson (2003), Simulations of recent Southern Hemisphere climate change, Science, 302(5643), 273–275, doi:10.1126/science.1087440. Kinnison, D. E., et al. (2007), Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model, J. Geophys. Res., 112, D20302, doi:10.1029/2006JD007879. Manzini, E., B. Steil, C. Bruhl, M. A. Giorgetta, and K. Kruger (2003), A new interactive chemistry-climate model: 2. Sensitivity of the middle atmosphere to ozone depletion and the increase in greenhouse gases and implications for recent stratospheric cooling, J. Geophys. Res., 108 (D14), 4429, doi:10.1029/2002JD002977. Marsh, D. R., R. R. Garcia, D. E. Kinnison, B. A. Boville, S. Walters, K. Matthes, and S. C. Solomon (2007), Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing, J. Geophys. Res., 112, D23306, doi:10.1029/2006JD008306. Matthes, K., U. Langematz, L. L. Gray, K. Kodera, and K. Labitzke (2004), Improved 11‐year solar signal in the Freie Universität Berlin Climate Middle Atmosphere Model (FUB‐CMAM), J. Geophys. Res., 109, D06101, doi:10.1029/2003JD004012. McLandress, C., T. G. Shepherd, J. F. Scinocca, D. A. Plummer, M. Sigmond, A. I. Jonsson, andM. C. Reader (2011), Separating the dynamical effects of climate change and ozone depletion. Part II: Southern Hemisphere troposphere, J. Clim., 24, 1850–1868, doi:10.1175/2010JCLI3958.1. Polvani, L. M., D. W. Waugh, G. J. P. Correa, and S. W. Son (2011), Stratospheric ozone depletion: The main driver of 20th century atmospheric circulation changes in the Southern Hemisphere, J. Clim., 24, 795–812, doi:10.1175/2010JCLI3772.1. Randel, W. J., and F. Wu (1999), Cooling of the Arctic and Antarctic polar stratospheres due to ozone depletion, J. Clim., 12, 1467–1479, doi:10.1175/1520-0442(1999)012<1467:COTAAA>2.0.CO;2. Randel, W. J., et al. (2009), An update of observed stratospheric temperature trends, J. Geophys. Res., 114, D02107, doi:10.1029/2008JD010421. Richter, J. H., F. Sassi, and R. R. Garcia (2010), Toward a physically based gravity wave source parameterization in a general circulation model, J. Atmos. Sci., 67, 136–156, doi:10.1175/2009JAS3112.1. Rienecker, M. M., et al. (2011), MERRA: NASA’s modern-era retrospective analysis for research and applications, J. Clim., 24, 3624–3648, doi:10.1175/JCLI-D-11-00015.1. Russell, J. K., W. Dixon, A. Gnanadesikan, R. J. Stouffer, and J. R. Toggweiler (2006), The Southern Hemisphere westerlies in a warming world: Propping open the door to the deep ocean, J. Clim., 19, 6382–6390, doi:10.1175/JCLI3984.1. Sigmond, M., J. C. Fyfe, and J. F. Scinocca (2010), Does the ocean impact the atmospheric response to stratospheric ozone depletion?, Geophys. Res. Lett., 37, L12706, doi:10.1029/2010GL043773. Smith, R. D., et al. (2010), The Parallel Ocean Program (POP) reference manual, Tech. Rep. LAUR-10-01853, Los Alamos Natl. Lab.,Los Alamos, N.M. Thompson, D. W. J., and S. Solomon (2002), Interpretation of recent Southern Hemisphere climate change, Science, 296, 895–899, doi:10.1126/science.1069270. Thompson, D. W. J., and S. Solomon (2005), Recent stratospheric climate trends as evidence in radiosonde data: Global structure and tropospheric linkages, J. Clim., 18, 4785–4795, doi:10.1175/JCLI3585.1. Tilmes, S., D. E. Kinnison, R. R. Garcia, R. Müller, F. Sassi, D. R. Marsh, and B. A. Boville (2007), Evaluation of heterogeneous processes in the polar lower stratosphere in the Whole Atmosphere Community Climate Model, J. Geophys. Res., 112, D24301, doi:10.1029/2006JD008334. Wang, L., and D. W. Waugh (2012), Chemistry-climate model simulations of recent trends in lower stratospheric temperatures and stratospheric residual circulation, J. Geophys. Res., 117, D09109, doi:10.1029/2011JD017130. Yin, J. H. (2005), A consistent poleward shift of the storm tracks in simulations of the 21st century climate, Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684. Young, P. J., K. H. Rosenlof, S. Solomon, S. C. Sherwood, Q. Fu, and J.-F. Lamarque (2012), Changes in stratospheric temperatures and their implications for changes in the Brewer-Dobson circulation, 1979–2005, J. Clim., 25, 1759–1772, doi:10.1175/2011JCLI4048.1.
Collections