Publication:
Influence of the processing temperature on the microstructure, texture, and hardness of the 7075 aluminum alloy fabricated by accumulative roll bonding

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2010-03
Authors
Cepeda Jimenez, C. M.
Ruano, O. A,
Carreño, F.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The 7075 alloy is an Al-Zn-Mg-Cu wrought age-hardenable aluminum alloy widely used in the aeronautical industry. The alloy was accumulative roll bonded at 300 A degrees C (573 K), 350 A degrees C (623 K), and 400 A degrees C (673 K), and the microstructure, texture, and hardness were investigated. Cell/(sub)grain size in the nanostructured range, typical beta-fiber rolling texture, and homogeneous hardness through thickness were determined in all cases. Misorientation was different at each processing temperature. At 400 A degrees C, the presence of elements in solid solution and the partial dissolution of the hardening precipitates lead to a poorly misoriented microstructure with a high dislocation density and a homogeneous beta-fiber texture of low intensity, typical of intermediate degrees of rolling. At 350 A degrees C and 300 A degrees C, highly misoriented microstructures with smaller dislocation density and intense heterogeneous beta-fiber rolling texture are observed, especially at 350 A degrees C, wherein the degree of dynamic recovery (DRV) is higher. Hardness of the accumulative roll bonded samples is smaller than that of the starting material due to particle coarsening, and it is affected by solid solution and/or by fine precipitates produced by reprecipitation of the elements in solid solution.
Description
© The Minerals, Metals & Materials Society and ASM International 2010. Financial support from CICYT (Project Nos. MAT2003-01172 and MAT2006-11202) is gratefully acknowledged. Two of the authors, PH and CMC, thank CSIC for an I3P fellowship and an I3P contract, respectively. We also thank A. García-Delgado for assistance with electron microscopy and C.C. Moreno-Hernández and J.A. Jiménez- Rodríguez for assistance with X-ray diffraction. Finally, the authors make a special mention in memory of P.J. González-Aparicio for his assistance with electron microscopy during all these years.
Unesco subjects
Keywords
Citation
1. Y.S. Chen, Q.D. Wang, H.J. Roven, M. Karlsen, Y.D. Yu, M.P. Liu, and J. Hjelen: J. Alloy Compd., 2008, vol. 462, pp. 192–200. 2. J.M. García-Infanta, A.P. Zhilyaev, A. Sharafutdinov, O.A. Ruano, and F. Carrenño: J. Alloy Compd., 2009, vol. 473, pp. 163–66. 3. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai: Acta Mater., 1999, vol. 47, pp. 579–83. 4. H.W. Kim, S.B. Kang, N. Tsuji, and Y. Minamino: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3151–63. 5. W.Q. Cao, A. Godfrey, N. Hansen, and Q. Liu: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 204–14. 6. M. Shaarbaf and M.R. Toroghinejad: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1693–700. 7. N. Tsuji, Y. Saito, S.-H. Lee, and Y. Minamino: Adv. Eng. Mater., 2003, vol. 5, pp. 338–44. 8. S.H. Lee, Y. Saito, N. Tsuji, H. Utsunomiya, and T. Sakai: Scripta Mater., 2002, vol. 46, pp. 281–85. 9. N. Kamikawa, T. Sakai, and N. Tsuji: Acta Mater., 2007, vol. 55, pp. 5873–88. 10. S.-H. Lee, H. Inagaki, H. Utsunomiya, Y. Saito, and T. Sakai: Mater. Trans., 2003, vol. 44, pp. 1376–81. 11. S.-H. Lee, H. Utsunomiya, and T. Sakai: Mater. Trans., 2004, vol. 45, pp. 2177–81. 12. P.B. Prangnell, J.R. Bowen, and P.J. Apps: Mater. Sci. Eng. A, 2004, vols. 375–377, pp. 178–85. 13. S.G. Chowdhury, V.C. Srivastava, B. Ravikumar, and S. Soren: Scripta Mater., 2006, vol. 54, pp. 1691–96. 14. S.G. Chowdhury, A. Dutta, B. Ravikumar, and A. Kumar: Mater. Sci. Eng. A, 2006, vol. 428, pp. 351–57. 15. E.A. Starke, Jr and J.T. Staley: Prog. Aerospace Sci., 1996, vol. 32, pp. 131–72. 16. R. DeIasi and P. Adler: Metall. Trans. A, 1977, vol. 8A, pp. 1177–83. 17. S.H. Lee, Y. Saito, T. Sakai, and H. Utsunomiya: Mater. Sci. Eng. A, 2002, vol. 235, pp. 228–35. 18. C.M. Cepeda-Jiménez, M. Pozuelo, O.A. Ruano, and F. Carreñoo: J. Alloy Compd., 2009, vol. 478, pp. 154–62. 19. B.L. Li, N. Tsuji, and N. Kamikawa: Mater. Sci. Eng. A, 2006, vol. 423, pp. 331–42. 20. F.J. Humphreys and M. Hatherly: in Recrystallization and Related Annealing Phenomena, Elsevier, Oxford, United Kingdom, 2004. 21. M.Z. Quadir, O. Al-Buhamad, L. Bassman, and M. Ferry: Acta Mater., 2007, vol. 55, pp. 5438–48. 22. O. Ruano and O. Sherby: Rev. Met. CENIM, 1983, vol. 19, pp. 261–70. 23. J. Hirsch and K. Lücke: Acta Metall., 1988, vol. 36, pp. 2863–82. 24. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219–74. 25. W. Mao: Mater. Sci. Eng. A, 1998, vol. 257, pp. 171–77. 26. C.P. Heason and P.B. Prangnell: Proc. 2nd Int. Conf. on Nanomaterials by Severe Plastic Deformation (NANOSPD2), Institute of Materials Physics of the University of Vienna, Vienna, Austria, 2002, pp. 498–504.
Collections