Publication:
The combined effects of ENSO and the 11 year solar cycle on the Northern Hemisphere polar stratosphere

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2011-12-13
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Geophysical Union
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The combined effects of El Niño-Southern Oscillation (ENSO) and the 11 year solar cycle on the Northern Hemisphere polar stratosphere have been analyzed in the Whole Atmosphere Community Climate Model version 3 in the absence of the quasi-biennial oscillation. The polar response to ENSO agrees with previous studies during solar minimum; composites of warm minus cold ENSO events show a warmer polar stratosphere and a weaker polar vortex, propagating downward as the winter evolves. During solar maximum conditions, little downward propagation of the ENSO signal is simulated, leading to colder temperatures and stronger winds in the polar lower stratosphere. The analysis of the Eliassen-Palm flux and wave index of refraction shows that this is mainly due to a reduction of upward propagating extratropical planetary wave number 1 component caused by changes in the background winds in the subtropics related to a warmer tropical upper stratosphere during solar maximum. The effect of the 11 year solar cycle variability on the polar stratosphere is not significant during cold ENSO events until February. During warm ENSO events, a statistically significant colder polar lower stratosphere and stronger polar vortex are simulated throughout the winter, and no downward propagation of this signal occurs. This is mainly due to the combined effects of solar maximum and warm ENSO conditions on the wave mean flow interaction. These results show a nonlinear behavior of the extratropical stratosphere response to the combination of the two forcings and highlight the need to stratify with respect to ENSO and solar conditions and analyze the seasonal march throughout the winter.
Description
© 2011 by the American Geophysical Union. The authors want to thank Rolando R. Garcia, Isabel Zubiaurre, and Gabiel Chiodo for useful discussions on wave mean flow interaction and index of refraction diagnostics, sea surface temperatures, and solar signal, respectively. We also acknowledge the three reviewers for their constructive comments and suggestions. N. Calvo was supported by the Spanish Ministry of Education and Science and the Fulbright Commission in Spain and by the Advanced Study Programme from the National Center for Atmospheric Research (ASP-NCAR). The WACCM simulations were carried out at the NASA Advanced Supercomputing Division (NAS) in Ames, CA; and at the Barcelona Supercomputing Center (BSC) in Barcelona, Spain. The use of these computational facilities is gratefully acknowledged. NCAR is sponsored by the U.S. National Science Foundation.
Keywords
Citation
Baldwin, M. P., et al. (2001), The quasi-biennial oscillation, Rev. Geophys., 39(2), 179–229, doi:10.1029/1999RG000073. Cagnazzo, C., and E. Manzini (2009), Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European region, J. Clim., 22, 1223–1238, doi:10.1175/2008JCLI2549.1. Cagnazzo, C., et al. (2009), Northern winter stratospheric temperature and ozone responses to ENSO inferred from an ensemble of chemistry climate models, Atmos. Chem. Phys., 9, 8935–8948, doi:10.5194/acp-9-8935- 2009. Calvo, N., and R. R. Garcia (2009), Wave forcing of the tropical upwelling in the lower stratosphere under increasing concentrations of greenhouse gases, J. Atmos. Sci., 66, 3184–3196, doi:10.1175/2009JAS3085.1. Calvo, N., M. A. Giorgetta, and C. Peña Ortiz (2007), Sensitivity of the boreal winter circulation in the middle atmosphere to the quasi-biennial oscillation in MAECHAM5 simulations, J. Geophys. Res., 112, D10124, doi:10.1029/2006JD007844. Calvo, N., R. García Herrera, and R. R. Garcia (2008), The ENSO signal in the stratosphere, in Trends and Directions in Climate Research, Ann. N. Y. Acad. Sci., 1146, 16–31, doi:10.1196/annals.1446.008. Calvo, N., M. A. Giorgetta, R. García Herrera, and E. Manzini (2009), Nonlinearity of the combined warm ENSO and QBO effects on the Northern Hemisphere polar vortex in MAECHAM5 simulations, J. Geophys. Res., 114, D13109, doi:10.1029/2008JD011445. Calvo, N., R. R. Garcia, W. J. Randel, and D. R. Marsh (2010), Dynamical mechanism for increase in tropical upwelling in the lowermost tropical stratosphere during warm ENSO events, J. Atmos. Sci., 67, doi:10.1175/2010JAS3433.1. Camp, C. D., and K.-K. Tung (2007), Stratospheric polar warming by ENSO in winter: A statistical study, Geophys. Res. Lett., 34, L04809, doi:10.1029/2006GL028521. Collins, W. D., et al. (2004), Description of the NCAR Community Atmosphere Model (CAM3), Tech. Rep., NCAR/TN-464 STR, 266 pp., Natl. Cent. for Atmos. Res., Boulder, Colo. Edmon, H. J., Jr., B. J. Hoskins, and M. E. McIntyre (1980), Eliassen-Palm cross sections for the troposphere, J. Atmos. Sci., 37, 2600–2616, doi:10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2. Free, M., and D. J. Seidel (2009), The observed temperature El Niño–Southern Oscillation temperature signal in the stratosphere, J. Geophys. Res., 114, D23108, doi:10.1029/2009JD012420. Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi (2007), Simulation of secular trends in the middle atmosphere, 1950– 2003, J. Geophys. Res., 112, D09301, doi:10.1029/2006JD007485. García Herrera, R., N. Calvo, R. R. Garcia, and M. A. Giorgetta (2006), Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 reanalysis data, J. Geophys. Res., 111, D06101, doi:10.1029/2005JD006061. Garfinkel, C. I., and D. L. Hartmann (2007), Effects of El Niño–Southern Oscillation and the quasi-biennial oscillation on polar temperatures in the stratosphere, J. Geophys. Res., 112, D19112, doi:10.1029/2007JD008481. Garfinkel, C. I., and D. L. Hartmann (2008), Different ENSO teleconnections and their effects on the stratosphere polar vortex, J. Geophys. Res., 113, D18114, doi:10.1029/2008JD009920. Gray, L. J., S. J. Phipps, T. J. Dunkerton, M. P. Baldwin, E. F. Drysdale, and M. R. Allen (2001), A data study of the influence of the equatorial upper stratosphere on Northern Hemisphere stratospheric sudden warmings, Q. J. R. Meteorol. Soc., 127, 1985–2003. Gray, L. J., S. Crooks, C. Pascoe, S. Sparrow, and M. Palmer (2004), Solar and QBO influences on the timing of stratospheric sudden warmings, J. Atmos. Sci., 61, 2777–2796, doi:10.1175/JAS-3297.1. Hamilton, K. (1993), An examination of observed Southern Oscillation effects in the Northern Hemisphere stratosphere, J. Atmos. Sci., 50, 3468–3474, doi:10.1175/1520 0469(1993)050<3468:AEOOSO>2.0.CO;2. Hampson, J., P. Keckhut, A. Hauchecorne, and M. L. Chanin (2005), The effect of the 11-year solar-cycle on the temperature in the upperstratosphere and mesosphere: Part II. Numerical simulations and the role of planetary waves, J. Atmos. Sol. Terr. Phys., 67, 948–958, doi:10.1016/ j.jastp.2005.03.005. Holton, J. R., and H.-C. Tan (1980), The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb, J. Atmos. Sci., 37, 2200–2208, doi:10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2. Holton, J. R., and H.-C. Tan (1982), The quasi-biennial oscillation in the Northern Hemisphere lower stratosphere, J. Meteorol. Soc. Jpn., 60, 140–148. Hood, L. L. (2004), Effects of solar UV variability on the stratosphere, in Solar Variability and Its Effects on Climate, Geophys. Monogr. Ser., vol. 141, edited by J. M. Pap and P. Fox, pp. 283–303, AGU, Washington, D. C., doi:10.1029/141GM20. Ineson, S., and A. A. Scaife (2009), The role of the stratosphere in the European climate response to El Niño, Nat. Geosci., 2, 32–36, doi:10.1038/ngeo381. Kodera, K. (2005), Possible solar modulation of the ENSO cycle, Pap. Meteorol. Geophys., 55, 21–32, doi:10.2467/mripapers.55.21. Kodera, K., and Y. Kuroda (2002), Dynamical response to the solar cycle, J. Geophys. Res., 107(D24), 4749, doi:10.1029/2002JD002224. Kryjov, V. N., and C.-K. Park (2007), Solar modulation of the El Niño/Southern Oscillation impact on the Northern Hemisphere annular mode, Geophys. Res. Lett., 34, L10701, doi:10.1029/2006GL028015. Kuroda, Y. (2007), Effect of QBO and ENSO on the solar cycle modulation of winter North Atlantic oscillation, J. Meteorol. Soc. Jpn., 85, 889–898, doi:10.2151/jmsj.85.889. Labitzke, K., and H. van Loon (1988), Associations between the 11-year solar cycle, the QBO and the atmosphere: Part I. The troposphere and stratosphere in the Northern Hemisphere winter, J. Atmos. Terr. Phys., 50, 197–206, doi:10.1016/0021-9169(88)90068-2. Manzini, E., M. A. Giorgetta, M. Esch, L. Kornblueh, and E. Roeckner (2006), The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model, J. Clim., 19, 3863–3881, doi:10.1175/JCLI3826.1. Marsh, D. R., R. R. Garcia, D. E. Kinnison, B. A. Boville, F. Sassi, S. C. Solomon, and K. Matthes (2007), Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing, J. Geophys. Res., 112, D23306, doi:10.1029/2006JD008306. Matsuno, T. (1970), Vertical propagation of stationary planetary waves in the winter Northern Hemisphere, J. Atmos. Sci., 27, 871–883, doi:10.1175/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2. Matthes, K., U. Langematz, L. L. Gray, K. Kodera, and K. Labitzke (2004), Improved 11-year solar signal in the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CMAM), J. Geophys. Res., 109, D06101, doi:10.1029/2003JD004012. Randel, W. J., R. R. Garcia, N. Calvo, and D. Marsh (2009), ENSO influence on zonal mean temperature and ozone in the tropical lower stratosphere, Geophys. Res. Lett., 36, L15822, doi:10.1029/2009GL039343. Richter, J. H., F. Sassi, and R. R. Garcia (2010), Toward a physically based gravity wave source paramete ization in a general circulation model, J. Atmos. Sci.,7, 136–156, doi:10.1175/2009JAS3112.1. Sassi, F., D. Kinnison, B. A. Boville, R. R. Garcia, and R. Roble (2004), Effect of El Niño–Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere, J. Geophys. Res., 109, D17108, doi:10.1029/2003JD004434. SPARC CCMVal (2010), SPARC Report on the Evaluation of Chemistry-Climate Models, edited by V. Eyring, T. G. Shepherd, and D. W. Waugh, WCRP-132, WMO/TD-1526, SPARC Rep. 5, World Meteorol. Organ., Geneva, Switzerland. [Available at http://www.sparc-climate.org.] van Loon, H., and K. Labitzke (1987), The Southern Oscillation: Part V. The anomalies in the lower stratosphere of the Northern Hemisphere in winter and a comparison with the quasi-biennial oscillation, Mon. Weather Rev., 115, 357–369, doi:10.1175/1520-0493(1987)115<0357:TSOPVT>2.0.CO;2. Wei, K., W. Chen, and R. Huang (2007), Association of tropical Pacific sea surface temperatures with the stratospheric Holton-Tan Oscillation in the Northern Hemsiphere winter, Geophys. Res. Lett., 34, L16814, doi:10.1029/2007GL030478.
Collections