Publication:
Relationship between the cathodoluminescence emission and resistivity in In doped CdZnTe crystals

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2009-08-15
Authors
Rodríguez Fernández, J.
Carcelen, V.
Vijayan, N.
Piqueras de Noriega, Javier
Sochinskii, N. V.
Pérez, J. M.
Dieguez, E.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Inst Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Cadmium zinc telluride, CdZnTe, bulk single crystals doped with 10^19 at./cm^3 of indium in the initial melt were grown by vertical Bridgman technique. The samples were investigated by energy dispersive spectroscopy, cathodoluminiscence (CL), and current-voltage behavior at room temperature. The results shows that Cd and Te vacancy concentration depend on the indium and zinc concentrations. CL measurements indicate a relationship between radiative centers associated to Cd and Te vacancies and resistivity values.
Description
© 2009 American Institute of Physics. This work was partially supported by the following Projects: Grant Nos. MEC-ESP2006-09935, CM-S-0505/ MAT-079, and FP7-SEC-2007-01 “European Commision,” and Contract No. 14240/00/NL7SH “European Space Agency.” One of the authors, V.C., thanks MEC, Spain for financial support. N.V. is grateful to Department of Science and Technology, Government of India for providing the BOYSCAST fellowship. The author J.R.F. is thankful to the Universidad Autónoma of Madrid for the financial support.
Unesco subjects
Keywords
Citation
1. G. Knoll, Radiation Detection and Measurement (Wiley, New York, 1989). 2. J. Britt and C. Ferekides, Appl. Phys. Lett. 62, 2851 (1993). 3. N. V. Sochinskii, V. N. Babentsov, and E. Diéguez, in Physics and Chemistry of II–VI Luminescence Semiconductors, edited by D. R. Vij and N. Singh (NOVA Science Publishers, Inc., New York, 1996), Chapter VI, pp. 248–276. 4. Y. Marfaing, J. Cryst. Growth 197, 707 (1999). 5. Q. Li, W. Jie, L. Fu, T. Wang, G. Yang, X. Bai, and G. Zha, J. Cryst. Growth 295, 124 (2006). 6. G. Yang, W. Jie, Q. Li, T. Wang, G. Li, and H. Hua, J. Cryst. Growth 283, 431 (2005). 7. V. Carcelen, N. Vijayan, E. Dieguez, A. Zappettini, M. Zha, L. Sylla, A. Fauler, and M. Fiederle, J. Optoelectron. Adv. Mater. 10, 3135 (2008). 8. E. Saucedo, O. Martinez, C. M. Ruiz, O. Vigil-Galán, I. Benito, L. Fornaro, N. V. Sochinskii, and E. Diéguez, J. Cryst. Growth 291, 416 (2006). 9. E. Rzepka, A. Lusson, A. Riviere, A. Aoudia, Y. Marfaing, and R. Triboulet, J. Cryst. Growth 161, 286 (1996). 10. J. K. Radhakrishnan and G. Salviati, J. Lumin. 113, 235 (2005). 11. A. Castaldini, A. Cavallini, B. Fraboni, L. Polenta, P. Fernández, and J. Piqueras, Mater. Sci. Eng., B 42, 302 (1996). 12. M. Fiederle, A. Fauler, and A. Zwerger, IEEE Trans. Nucl. Sci. 54, 769 (2007). 13. A. Castaldini, A. Cavallini, B. Fraboni, P. Fernández, and J. Piqueras, J. Appl. Phys. 83, 2121 (1998).
Collections