Publication:
Influence of the quasi-biennial oscillation and El Niño-Southern Oscillation on the frequency of sudden stratospheric warmings

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2011-10-21
Authors
Richter, Jadwiga H.
Matthes, Katja
Gray, Lesley J.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Geophysical Union
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Stratospheric sudden warmings (SSWs) are a major source of variability during Northern Hemisphere winter. The frequency of occurrence of SSWs is influenced by El Nino-Southern Oscillation (ENSO), the quasi-biennial oscillation (QBO), the 11 year solar cycle, and volcanic eruptions. This study investigates the role of ENSO and the QBO on the frequency of SSWs using the National Center for Atmospheric Research's Whole Atmosphere Community Climate Model, version 3.5 (WACCM3.5). In addition to a control simulation, WACCM3.5 simulations with different combinations of natural variability factors such as the QBO and variable sea surface temperatures (SSTs) are performed to investigate the role of QBO and ENSO. Removing only one forcing, variable SSTs or QBO, yields a SSW frequency similar to that in the control experiment; however, removing both forcings results in a significantly decreased SSW frequency. These results imply nonlinear interactions between ENSO and QBO signals in the polar stratosphere during Northern Hemisphere winter. This study also suggests that ENSO and QBO force SSWs differently. The QBO forces SSW events that are very intense and whose impact on the stratospheric temperature can be seen between December and June, whereas ENSO forces less intense SSWs whose response is primarily confined to the months of January, February, and March. The effects of SSWs on the stratospheric background climate is also addressed here.
Description
We thank C. Kadow for the technical assistance with Figures 1 and 2. The National Center for Atmospheric Research (NCAR) is sponsored by the National Science Foundation. N. Calvo was partially supported by the Advanced Study Program (ASP) at NCAR. K. Matthes is supported within the Helmholtz-University Young Investigators Group NATHAN funded by the Helmholtz Association through the President's Initiative and Networking Fund, GFZ Potsdam, and Freie Universitat Berlin. Copyright 2011 by the American Geophysical Union. L. Gray is supported by the U.K. Natural Environment Research Council (NERC) through its National Centre for Atmospheric Science (NCAS).
Keywords
Citation
Calvo, N., M. A. Giorgetta, R. García Herrera, and E. Manzini (2009), Nonlinearity of the combined warm ENSO and QBO effects on the Northern Hemisphere polar vortex in MAECHAM5 simulations, J. Geophys. Res., 114, D13109, doi:10.1029/2008JD011445. Camp, C. D., and K. K. Tung (2007), Stratospheric polar warming by ENSO in winter: A statistical study, Geophys. Res. Lett., 34, L04809, doi:10.1029/2006GL028521. Charlton, A. J., et al. (2007), A new look at stratospheric sudden warming evens: Part II. Evaluation of numerical model simulations, J. Clim., 20, 470–488. Dunkerton, M. P. B. T. J. (2001), Stratospheric harbingers of anomalous weather regimes, Science, 294, 581–584. Frame, T. H., and L. J. Gray (2010), The 11-yr solar cycle in ERA‐40 data: An update to 2008, J. Clim., 23(8), 2213–2222, doi:10.1175/2009JCLI3150.1. Garcia, R. R., et al. (2007), Simulation of secular trends in the middle atmosphere, 1950–2003, J. Geophys. Res., 112, D09301, doi:10.1029/2006JD007485. García Herrera, R., N. Calvo, R. Garcia, and M. A. Giorgetta (2006), Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA‐40 reanalysis data, J. Geophys. Res., 111, D06101, doi:10.1029/2005JD006061. Garfinkel, C. I., and D. L. Hartmann (2007), Effects of the El Niño–Southern Oscillation and the quasi‐biennial oscillation on polar temperatures in the stratosphere, J. Geophys. Res., 112, D19112, doi:10.1029/2007JD008481. Gray, L. J. (2003), Flow regimes in the winter stratosphere of the Northern Hemisphere, Q. J. R. Meteorol. Soc., 129, 925–945. Gray, L. J., E. F. Drysdale, B. N. Lawrence, and T. J. Dunkerton (2001a), On the interannual variability of the Northern‐Hemisphere circulation: The role of the quasi‐biennial oscillation, Q. J. R. Meteorol. Soc., 127, 1413–1432, doi:10.1002/qj.49712757416. Gray, L. J., S. Phipps, T. Dunkerton, M. Baldwin, E. Drysdale, and M. Allen (2001b), A data study of the influence of the equatorial upper stratosphere on Northern‐Hemisphere stratospheric sudden warmings, Q. J. R. Meteorol. Soc., 127, 1985–2003, doi:10.1002/qj.49712757607. Gray, L. J., S. Crooks, C. Pascoe, S. Sparrow, and M. Palmer (2004), Solar and QBO influences on the timing of stratospheric sudden warmings, J. Atmos. Sci., 61, 2777–2796. Gray, L. J., S. Crooks, M. P. C. Pascoe, and S. Sparrow (2006), A possible transfer mechanism for the 11‐year solar cycle to the lower stratosphere, Space Sci. Rev., 125, 357–370. Gray, L. J., et al. (2010), Solar influences on climate, Rev. Geophys., 48, RG4001, doi:10.1029/2009RG000282. Holton, J. R., and H. Tan (1980), The influence of the equatorial quasibiennial oscillation on the global circulation at 50 mb, J. Atmos. Sci., 37, 2200–2208. Holton, J. R., and H. Tan (1982), The quasi‐biennial oscillation in the Northern Hemisphere stratosphere, J. Meteorol. Soc. Jpn., 60, 140–148. Hood, L., J. Jirikowic, and J. McCormack (1993), Quasi‐decadal variability of the stratosphere: Influence of long‐term solar ultraviolet variations, J. Atmos. Sci., 50, 3941–3958. Kodera, K., and Y. Kuroda (2002), Dynamical response to the solar cycle, J. Geophys. Res., 107(D24), 4749, doi:10.1029/2002JD002224. Kodera, K., and K. Yamazaki (1990), Long‐term variation of upper stratospheric circulation in the Northern Hemisphere in December, J. Meteorol. Soc. Jpn., 68, 101–105. Kryjov, V. N., and C.‐K. Park (2007), Solar modulation of the El‐Niño/Southern Oscillation impact on the Northern Hemisphere annular mode, Geophys. Res. Lett., 34, L10701, doi:10.1029/2006GL028015. Kuroda, Y. (2008a), Effect of stratospheric sudden warming and vortex intensification on the tropospheric climate, J. Geophys. Res., 113, D15110, doi:10.1029/2007JD009550. Kuroda, Y. (2008b), Role of the stratosphere on the predictability of medium range weather forecast: A case study of winter 2003–2004, Geophys. Res. Lett., 35, L19701, doi:10.1029/2008GL034902. Labitzke, K. G. (1987), Sunspots, the QBO, and the stratospheric temperature in the north polar region, Geophys. Res. Lett., 14, 535–537. Labitzke, K., and B. Naujokat (2000), The lower Arctic stratosphere in winter since 1952, SPARC Newsl., 15, 11–14. Labitzke, K. G., and H. van Loon (1988), Association between the 11‐year solar cycle, the QBO and the atmosphere. part I: The troposphere and stratosphere in the Northern Hemisphere in winter, J. Atmos. Terr. Phys., 50, 197–206. Lin, S. J. (2004), A “vertically Lagrangian” finite‐volume dynamical core for global atmospheric models, Mon. Weather Rev., 132, 2293–2307. Manzini, E., et al. (2006), The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model, J. Clim., 3863–3881, doi:10.1175/JCLI3826.1. Marshall, A. G., and A. A. Scaife (2010), Improved predictability of stratospheric sudden warming events in an atmospheric general circulation model with enhanced stratospheric resolution, J. Geophys. Res., 115, D16114, doi:10.1029/2009JD012643. Matthes, K., U. Langematz, L. L. Gray, K. Kodera, and K. Labitzke (2004), Improved 11‐year solar signal in the Freie Universität Berlin Climate Middle Atmosphere Model (FUB‐CMAM), J. Geophys. Res., 109, D06101, doi:10.1029/2003JD004012. Matthes, K., D. R. Marsh, R. R. Garcia, D. E. Kinnison, F. Sassi, and S. Walters (2010), Role of the QBO in modulating the influence of the 11 year solar cycle on the atmosphere using constant forcings, J. Geophys. Res., 115, D18110, doi:10.1029/2009JD013020. Mitchell, D. M., L. J. Gray, and A. J. Charlton‐Perez (2011), The structure and evolution of the stratospheric vortex in response to natural forcings, J. Geophys. Res., 116, D15110, doi:10.1029/2011JD015788. Pascoe, C. L., L. J. Gray, and A. A. Scaife (2006), A GCM study of the influence of equatorial winds on the timing of sudden stratospheric warmings, Geophys. Res. Lett., 33, L06825, doi:10.1029/2005GL024715. Richter, J. H., F. Sassi, R. R. Garcia, K. Matthes, and C. Fischer (2008), Dynamics of the middle atmosphere as simulated by the Whole Atmosphere Community Climate Model, version 3 (WACCM3), J. Geophys. Res., 113, D08101, doi:10.1029/2007JD009269. Richter, J. H., F. Sassi, and R. R. Garcia (2010), Towards a physically based gravity wave source parameterization in a general circulation model, J. Atmos. Sci., 67, 136–156. Sassi, F., D. Kinnison, B. A. Boville, R. R. Garcia, and R. Roble (2004), Effect of El Niño–Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere, J. Geophys. Res., 109, D17108, doi:10.1029/2003JD004434. Scherhag, R. (1952), Die explosionsartigen Stratosphärenerwärmungen des Spätwinters 1951/52, Ber. Dtsch. Wetterdienstes, 6(38), 51–63. Stratospheric Processes and their Role in Climate CCM Validation Activity (SPARC CCMVal) (2010), SPARC report on the evaluation of chemistry-climate models, edited by V. Eyring, T. G. Shepherd, and D. W. Waugh, SPARC Rep. 5, Geneva, Switzerland. [Available at http://www.atmosp. physics.utoronto.ca/SPARC.] van Loon, H., and K. Labitzke (1987), The Southern Oscillation: Part V: The anomalies in the lower stratosphere of the Northern Hemisphere in winter and comparison with the quasi‐biennial oscillation, Mon. Weather Rev., 115, 357–369. Wei, K., W. Chen, and R. Huang (2007), Association of tropical Pacific sea surface temperatures with the stratospheric Holton‐Tan Oscillation in the Northern Hemisphere winter, Geophys. Res. Lett., 34, L16814, doi:10.1029/2007GL030478.
Collections