Publication:
Growth and characterization of CdTe:Ge:Yb

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2008-04
Authors
Sochinskii, N. V.
Saucedo, E.
Abellan, M.
Rodríguez Fernández, José
Piqueras de Noriega, Javier
Ruiz, C.M.
Bermudez, V.
Dieguez, E.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science BV
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Cadmium telluride (CdTe) crystals and epitaxial layers were grown by the vertical Bridgman method and vapor-phase epitaxy, respectively, to obtain the high-resistive material suitable for X- and gamma-ray detectors. The crystals and layers were doped with Ge at the concentration of 5 x 10(17) cm(-3) and co-doped with the rare element Yb at the concentration range from 1 x 10(17) to 1 x 10(19) cm(-3). The CdTe:Ge:Yb samples were studied by the structural and electrical characterization techniques, low-temperature photoluminescence (PL) and cathodoluminescence (CL) spectroscopy and CL imaging. Experimental findings testify that homogeneous crystals and layers of reasonably good structural quality can be grown with the Yb concentration below the value of 5 x 10(18)cm(-3) that is estimated to be the limit for Yb solubility in CdTe:Ge:Yb. These findings seem to be related with the purification effect caused by the interaction of the Yb dopant with the group I residual impurities.
Description
© 2007 Elsevier B.V. All rights reserved. International Conference on Crystal Growth (15. 2007 . Salt Lake City,Utah). This work has been partly supported by the projects CAM SENSORCDT S-0505/MAT/0209 and EU FP6 PHOLOGIC 017158.
Unesco subjects
Keywords
Citation
[1] N.V. Sochinskii, V.N. Babentsov, E. Diéguez, Cadmium telluride and related compounds, in: D.R. Vij, N. Singh (Eds.), Physics and Chemistry of II–VI Luminescence Semiconductors, NOVA Science Publishers, Inc., New York, USA, 1996, pp. 248–276 (Chapter VI). [2] M. Schieber, et al., J. Crystal Growth 231 (2001) 235. [3] E. Saucedo, L. Fornaro, N.V. Sochinskii, A. Cuña, V. Corregidor, D. Granados, E. Die´guez, IEEE Trans. Nucl. Sci. 51 (2004) 3105. [4] S. Neretina, N.V. Sochinskii, P. Mascher, E. Saucedo, Mater. Res. Soc. Symp. Proc. 864 (2005) E4.18.1. [5] E. Saucedo, C.M. Herrero, L. Fornaro, N.V. Sochinskii, E. Diéguez, J. Crystal Growth 275 (2005) 471. [6] E. Saucedo, O. Martínez, C.M. Ruiz, O. Vigil-Galán, I. Benito, L. Fornaro, N.V. Sochinskii, E. Die´guez, J. Crystal Growth 291 (2006) 416. [7] M. Fiederle, V. Babentsov, J. Franc, A. Fauler, K.W. Benz, R.B. James, E. Cross, J. Crystal Growth 243 (2002) 77. [8] J. Franc, P. Horodysky´ , R. Grill, J. Kubát, E. Saucedo, N.V. Sochinskii, J. Crystal Growth 286 (2006) 384. [9] U. Pal, P. Fernandez, J. Piqueras, N.V. Sochinskii, E. Diéguez, J. Appl. Phys. 78 (1995) 1992. [10] G. Panin, J. Piqueras, N.V. Sochinskii, E. Diéguez, Appl. Phys. Lett. 70 (1997) 877. [11] N.V. Sochinskii, M. Lozano, G. Pellegrini, M. Ullan, Nucl. Instru. and Methods A 568 (2006) 451. [12] D. Wagner, P. Irsigler, D.J. Dunstan, J. Phys. C 17 (1984) 6793. [13] J. Aguilar-Hernández, M. Cárdenas-García, G. Contreras-Puente, J. Vidal-Larramendi, Mater. Sci. Eng. B 102 (2003) 203. [14] S.H. Song, J. Wang, Y. Ishikawa, S. Seto, M. Isshiki, J. Crystal Growth 237–239 (2002) 1726. [15] Z. Sobiesierski, I.M. Dharmadasa, R.H. Williams, Appl. Phys. Lett. 53 (1988) 2623. [16] C.B. Davis, D.D. Allred, A. Reyes-Mena, J. González-Hernández, O. González, B.C. Hess, W.P. Allred, Phys. Rev. B 47 (1993) 13363.
Collections