Publication:
Northern winter stratospheric temperature and ozone responses to ENSO inferred from an ensemble of Chemistry Climate Models

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2009
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Copernicus publications
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The connection between the El Nino Southern Oscillation (ENSO) and the Northern polar stratosphere has been established from observations and atmospheric modeling. Here a systematic inter-comparison of the sensitivity of the modeled stratosphere to ENSO in Chemistry Climate Models (CCMs) is reported. This work uses results from a number of the CCMs included in the 2006 ozone assessment. In the lower stratosphere, the mean of all model simulations reports a warming of the polar vortex during strong ENSO events in February-March, consistent with but smaller than the estimate from satellite observations and ERA40 reanalysis. The anomalous warming is associated with an anomalous dynamical increase of column ozone north of 70 degrees N that is accompanied by coherent column ozone decrease in the Tropics, in agreement with that deduced from the NIWA column ozone database, implying an increased residual circulation in the mean of all model simulations during ENSO. The spread in the model responses is partly due to the large internal stratospheric variability and it is shown that it crucially depends on the representation of the tropospheric ENSO teleconnection in the models.
Description
© Author(s) 2009. Chiara Cagnazzo is supported by the Centro Euro-Mediterraneo per i Cambiamenti Climatici. Elisa Manzini acknowledges the support of the EC SCOUT-O3 Integrated Project (505390-GOCE-CT-2004) for part of this work. Natalia Calvo was supported by the Spanish Ministry of Education and Science and the Fulbright Commission in Spain. CCSRNIES’s research has been supported by the Global Environmental Research Fund (GERF) of the Ministry of the Environment (MOE) of Japan (A-071). MRI simulations have been made partly with the MRI supercomputer and partly with the NIES supercomputer. CMAM simulations were supported by the Canadian Foundation for Climate and Atmospheric Sciences and run on the Environment Canada Supercomputer. We acknowledge the modeling groups for making their simulations available for this analysis, the Chemistry-Climate Model Validation Activity (CCMVal) for WCRP’s (World Climate Research Programme) SPARC (Stratospheric Processes and their Role in Climate) project for organizing and coordinating the model data analysis activity, and the British Atmospheric Data Center (BADC) for collecting and archiving the CCMVal model output. Chiara Cagnazzo and Elisa Manzini are grateful to Antonio Navarra for useful discussions. We are thankful to John Austin for suggestions and discussions on the manuscript.
Keywords
Citation
Akiyoshi, H., Zhou, L. B., Yamashita, Y., Sakamoto, K., Yoshiki, M., Nagashima, T., Takahashi, M., Kurokawa, J., Takigawa, M., and Imamura, T.: A CCM simulation of the breakup of the Antarctic polar vortex in the years 1980–2004 under the CCMVal scenarios, J. Geophys. Res., 114, D03103, doi:10.1029/2007JD009261, 2009. Akiyoshi, H., Sugita, T., Kanzawa, H., and Kawamoto, N.: Ozone perturbations in the Arctic summer lower stratosphere as a reflection of NOx chemistry and planetary scale wave activity, J. Geophys. Res., 109, D03304, doi:10.1029/2003JD003632, 2004. Austin, J.: A three-dimensional coupled chemistry-climate model simulation of past stratospheric trends, J. Atmos. Sci., 59, 218–232, 2002. Austin, J. and Butchart, N.: Coupled chemistry-climate model simulation for the period 1980 to 2020: Ozone depletion and the start of ozone recovery, Q. J. Roy. Meteorol. Soc., 129, 3225–3249, 2003. Austin, J. and Wilson, R. J.: Ensemble simulations of the decline and recovery of stratospheric ozone, J. Geophys. Res., 111, D16314, doi:10.1029/2005JD006907, 2006. Austin, J., Wilson, R. J., Li, F., and Voemel, H.: Evolution of water vapor concentrations and stratospheric age of air in coupled chemistry- climate model simulations, J. Atmos. Sci., 64, 905–921, 2007. Beagley, S. R., de Grandpre’, J., Koshyk, J. N., McFarlane, N. A., and Shepherd, T. G.: Radiative-dynamical climatology of the first-generation Canadian Middle Atmosphere Model, Atmos. Ocean, 35, 293–331, 1997. Bloom., S., da Silva, A., Dee, D., Bosilovich, M., Chern, J.-D., Pawson, S., Schubert, S., Sienkiewicz, M., Stajner, I., Tan, W.- W. and Wu, M.-L.: Documentation and validation of the Goddard Earth Observing System (GEOS) data assimilation system – Version 4, in Global Modeling Data Assimilation 104606, Tech. Rep. Ser. 26, NASA Goddard Space Flight Cent., Md., 2005. Bodeker, G. E., Shiona, H., and Eskes, H.: Indicators of Antarctic ozone depletion, Atmos. Chem. Phys., 5, 2603–2615, 2005, http://www.atmos-chem-phys.net/5/2603/2005/. Brindley, H. E., Geer, A. J., and Harries, J. E.: Climate variability and trend in SSU radiances: a comparison of model predictions and satellite observations in the middle stratosphere, J. Climate, 12, 3197–321, 1999. Brönnimann, S., Luterbacher, J., Staehelin, J., Svendby, T. M., Hansen, G., and Svenøe, T.: Extreme climate of the global troposphere and stratosphere 1940–1942 related to El Niño, Nature, 431, 971–974, 2004. Brönnimann, S., Schraner, M., Müller, B., Fischer, A., Brunner, D., Rozanov, E., and Egorova, T.: The 1986–1989 ENSO cycle in a chemical climate model, Atmos. Chem. Phys., 6, 4669–4685, 2006, http://www.atmos-chem-phys.net/6/4669/2006/. Cagnazzo, C. and Manzini, E.: Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European Region, J. Climate, 22(5), 1223–1238, 2009. Camp, C. D. and Tung, K.-K.: Stratospheric polar warming by ENSO in winter: A statistical study, Geophys. Res. Lett., 34, L04809, doi:10.1029/2006GL028521, 2007. de Grandpre, J., Beagley, S. R. , Fomichev, V. I., Griffioen, E., Mc- Connell, J. C., Medvedev, A. S., and Shepherd, T. G.: Ozone climatology using interactive chemistry: Results from the Canadian Middle Atmosphere Model, J. Geophys. Res., 105, 26475–26492, 2000. Deckert, R. and Dameris, M.: Higher tropical SSTs strengthen the tropical upwelling via deep convection, Geophys. Res. Lett., 35, L10813, doi:10.1029/2008GL033719, 2008. Egorova, T., Rozanov, E., Zubov, V., Manzini, E., Schmutz, W., and Peter, T.: Chemistry-climate model SOCOL: A validation of the present-day climatology, Atmos. Chem. Phys., 5, 1557–1576, 2005, http://www.atmos-chem-phys.net/5/1557/2005/. Eyring, V., Butchart, N., Waugh, D., et al.: Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past, J. Geophys. Res., 111, D22308, doi:10.1029/2006JD007327, 2006. Fioletov, V. E. and Shepherd, T. G.: Seasonal persistence of midlatitude total ozone anomalies, Geophys. Res. Lett., 30, 1417, doi:10.1029/2002GL016739, 2003. Fischer, A. M., Shindell, D. T., Winter, B., Bourqui, M. S., Faluvegi, G., Rozanov, E., Schraner, M., and Brönnimann, S.: Stratospheric winter climate response to ENSO in three chemistry-climate models, Geophys. Res. Lett., 35, L13819, doi:10.1029/2008GL034289, 2008. Free, M., and Seidel, D. J.: The observed ENSO temperature signal in the stratosphere, J. Geophys. Res., doi:10.1029/2009JD012420, in press, 2009. Fusco, A. C. and Salby, M. L.: Interannual variations of total ozone and their relationship to variations of planetary wave activity, J. Climate, 12, 1619–1629, 1999. García, R. R., Marsh, D. R., Kinnison, D. E., Boville, B. A., and Sassi, F.: Simulation of secular trends in the middle atmosphere, 1950–2003, J. Geophys. Res., 112, D09301, doi:10.1029/2006JD007485, 2007. García Herrera, R., Calvo, N., García, R. R., and Giorgetta, M. A.: Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 reanalysis data, J. Geophys. Res., 111, D06101 doi:10.1029/2005JD006061, 2006. Garfinkel, C. I. and Hartmann, D. L.: Effects of El Niño – Southern Oscillation and the Quasi-Biennial Oscillation on polar temperatures in the stratosphere, J. Geophys. Res., 112, D19112, doi:10.1029/2007JD008481, 2007. Garny, H., Dameris, M., and Stenke, A.: Impact of prescribed SSTs on climatologies and long-term trends in CCM simulations, Atmos. Chem. Phys., 9, 6017–6031, 2009, http://www.atmos-chem-phys.net/9/6017/2009/. Hadjinicolaou, P., Pyle J. A., Chipperfeld, M. P., and Kettleborough, J. A.: Effect of interannual meteorological variability on middle latitude O3, Geophys. Res. Lett., 24, 2993–2996, 1997. Hamilton, K.: An examination of observed Southern Oscillation effects in the Northern Hemisphere stratosphere, J. Atmos. Sci., 50, 3468–3473, 1993. Hoerling, M. P., Kumar, A., and Zhong, M.: El Niño, La Niña, and the nonlinearity of their teleconnections, J. Climate, 10, 1769–1786, 1997. Kurokawa, J., Akiyoshi, H., Nagashima, T., Masunaga, H., Nakajima, T., Takahashi, M., and Nakane, H.: Effects of atmospheric sphericity on stratospheric chemistry and dynamics over Antarctica, J. Geophys. Res., 110, D21305, doi:10.1029/2005JD005798, 2005. Kuroda, Y. and Kodera, K.: Variability of the polar-night jet in the northern and southern hemispheres, J. Geophys. Res., 106(D18), 20703–20713, 2001. Labitzke, K. and van Loon, H.: The Southern Oscillation. Part IX: The influence of volcanic eruptions on the Southern Oscillation in the stratosphere, J. Climate, 2, 1223–1226, 1989. Lefevre, F., Brasseur, G. P., Folkins, I., Smith, A. K., and Simon, P.: Chemistry of the 1991–1992 stratospheric winter: Three dimensional model simulations, J. Geophys. Res., 99, 8183–8195, 1994. Manzini, E., Steil, B., Brühl, C., Giorgetta, M. A., and Krüger, K.: A new interactive chemistry-climate model: 2. Sensitivity of the middle atmosphere to ozone depletion and increase in greenhouse gases and implications for recent stratospheric cooling, J. Geophys. Res., 108(D14), 4429, doi:10.1029/2002JD002977, 2003. Manzini, E., Giorgetta, M. A., Esch, M., Kornblueh, L., and Roeckner, E.: The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model, J. Climate, 19, 3863–3881, 2006. Nash, J. and Edge, P. R.: Temperature changes in the stratosphere and lower mesosphere 1979–1988 inferred from TOVS radiance observations, Adv. Space Res., 9, 333–341, 1989. Newman, P. A., Nash, E. R., and Rosenfield, J. E.: What controls the temperature of the Arctic stratosphere during the spring?, J. Geophys. Res., 106, 19999–20010, 2001. Randel, W. J., Wu, F., and Stolarski, R.: Changes in column ozone correlated with the stratospheric EP fux, J. Meteorol. Soc. Japan, 80, 849–862, 2002. Randel, W. J., García, R. R., Calvo, N., and Marsh, D.: ENSO influence on zonal mean temperature and ozone in the tropical lower stratosphere, Geophys. Res. Lett., 36, L15822, doi:10.1029/2009GL039343, 2009. Rozanov, E., Schraner, M., Schnadt, C., Egorova, T., Wild, M., Ohmura, A., Zubov, V., Schmutz, W., and Peter, T.: Assessment of the ozone and temperature variability during 1979–1993 with the chemistry-climate model SOCOL, Adv. Space Res., 35(8), 1375–1384, 2005. Salby, M. L. and Callaghan, P. F.: Interannual Changes of the Stratospheric Circulation: Relationship to Ozone and Tropospheric Structure, J. Climate, 3673–3685, 2002. Sassi, F., Kinnison, D., Boville, B. A., García, R. R., and Roble. R.: Effect of El Niño–Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere, J. Geophys. Res., 109, D17108, doi:10.1029/2003JD004434, 2004. Scinocca, J. F., McFarlane, N. A., Lazare, M., Li, J., and Plummer, D.: Technical Note: The CCCma third generation AGCM and its extension into the middle atmosphere, Atmos. Chem. Phys., 8, 7055–7074, 2008 Shibata, K. and Deushi, M.: Long-term variations and trends in the simulation of the middle atmosphere 1980–2004 by the chemistry-climate model of the Meteorological Research Institute, Ann. Geophys., 26, 1299–1326, 2008a, http://www.ann-geophys.net/26/1299/2008/. Shibata, K. and Deushi, M.: Simulation of the stratospheric circulation and ozone during the recent past (1980–2004) with the MRI chemistry-climate model, CGER’s Supercomputer Monograph Report Vol. 13, National Institute for Environmental Studies, Japan, 154 pp., 2008b. Shiotani, M.: Annual, quasi-biennial, and El Niño-Southern Oscillation (ENSO) timescale variations in equatorial total ozone, J. Geophys. Res., 97, 7625–7633, 1992. Spencer, R. W. and Christy, J. R.: Precision Lower Stratospheric Temperature Monitoring with the MSU: Technique, Validation, and Results 1979–1991, J. Climate, 6, 1194–1204, 1993. Steil, B., Bruehl, C., Manzini, E., Crutzen, P. J., Lelieveld, J., Rasch, P. J., Roeckner, E., and Krueger, K.: A new interactive chemistry-climate model: 1. Present-day climatology and interannual variability of the middle atmosphere using the model and 9 years of HALOE/UARS data, J. Geophys. Res., 108(D9), 4290, doi:10.1029/2002JD002971, 2003. Steinbrecht, W., Hassler, B., Brühl, C., Dameris, M., Giorgetta, M. A., Grewe, V., Manzini, E., Matthes, S., Schnadt, C., Steil, B., and Winkler, P.: Interannual variation patterns of total ozone and temperature in observations and model simulations, Atmos. Chem. Phys., 6, 349–374, 2006, http://www.atmos-chem-phys.net/6/349/2006/. Stenke, A., Dameris, M., Grewe, V., and Garny, H.: Implications of Lagrangian transport for simulations with a coupled chemistryclimate model, Atmos. Chem. Phys., 9, 5489–5504, 2009, http://www.atmos-chem-phys.net/9/5489/2009/. Stolarski, R. S., Douglass, A. R., Steenrod, S. and Pawson, S.: Trends in stratospheric ozone: Lessons learned from a 3d chemical transport model, J. Atmos. Sci., 63, 1028–1041, 2006. Strauss, D. M. and Shukla, J.: Distinguishing between the SSTforced and internal variability in mid latitudes: Analysis of observations and GCM simulations, Q. J. Roy. Meteor. Soc., 126, 2323–2350, 2000. Struthers, H., Austin, J., Kreher, K., Bodeker, G., Schofield, R., Johnston, P., Shiona, H., and Thomas, A.: Past and future simulations of NO2 from a coupled chemistry-climate model in comparison with observations, Atmos. Chem. Phys., 4, 2227–2239, 2004, http://www.atmos-chem-phys.net/4/2227/2004/. Tian, W. and Chipperfield, M. P.: A new coupled chemistry – climate model for the stratosphere: The importance of coupling for future O3 – climate predictions, Q. J. Roy. Meteor. Soc., 131, 281–304, 2005. Taguchi, M. and Hartmann, D. L.: Increased occurrence of stratospheric sudden warmings during El Niño as simulated by WACCM, J. Climate, 19(3), 324–332, 2006. Uppala, S., Kallberg, P. W., Simmons, A. J., et al.: ERA-40: ECMWF 45-year reanalysis of the global atmosphere and surface conditions 1957–2002: ECMWF Newsletter, Vol. 101, ECMWF, Reading, United Kingdom, 2–21, 2004. Uppala, S., Kallberg, P. , Hernández, A., et al.: The ERA-40 reanalysis, Q. J. Roy. Meteor. Soc., 131, 2961–3211, 2005. Van Loon, H. and Labitzke, K.: The Southern Oscillation. Part V: The anomalies in the lower stratosphere of the Northern Hemisphere in winter and a comparison with the quasi-biennial oscillation, Mon. Weather Rev., 115, 357–369, 1987. Weber, M., Dhomse, S., Wittrock, F., Richter, A., Sinnhuber, B.- M., and Burrows, J. P.: Dynamical control of NH and SH winter/spring total ozone from GOME observations in 1995–2002, Geophys. Res. Lett., 30(11), 1583, doi:10.1029/2002GL016799, 2003. World Meteorological Organization/United Nations Environment Programme (WMO/UNEP), Scientific Assessment of Ozone Depletion: 2006, Rep. 50, World Meteorol. Org., Global Ozone Res. and Monit. Proj., Geneva, Switzerland, 2007.
Collections