Publication:
Sensitivity of the boreal winter circulation in the middle atmosphere to the quasi-biennial oscillation in MAECHAM5 simulations

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2007-05-30
Authors
Giorgetta, M. A.
Peña Ortiz, C.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Geophysical Union
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The polar vortex in the Northern Hemisphere exhibits high intraseasonal and interannual variability which, to some degree, may be controlled by the quasi-biennial oscillation (QBO) in the tropical stratosphere. Here we analyze the QBO signal in the Northern Hemisphere polar vortex in a model simulation using the general circulation model MAECHAM5 ( Middle Atmosphere European Center Hamburg Model), which simulates the QBO as an internal mode of variability. Composites have been computed for the westerly and easterly QBO phases from early winter to late winter ( November December, December - January and January - February) of a 50-year experiment containing 20 complete QBO cycles. This method identifies tropical and midlatitude patterns in wind and temperature that are related to the secondary meridional circulation of the QBO extending towards the winter pole. In the tropics, significant QBO signature is observed in the mesosphere up to 0.05 hPa only in early winter and mainly in the easterly QBO phase forced by the parameterized gravity waves-mean flow interaction. At high latitudes, MAECHAM5 shows a significantly warmer (colder) polar stratosphere in the easterly ( westerly) QBO phase at 30 hPa accompanied by a weaker ( stronger) polar vortex in the late winter months, from December to February ( December to January) in the easterly ( westerly) phase of the QBO. In early winter there is no significant change in temperature and zonal mean zonal wind in the polar stratosphere. The analysis of EP fluxes shows a different behavior between QBO phases, with changes in the waveguide. Wave propagation occurs upwards and polewards in the easterly QBO phase at 30 hPa, while waves are refracted equatorward in the westerly phase. No relationship has been found between the tropical QBO and the final warming at the end of the boreal winter.
Description
© 2007 by the American Geophysical Union. The experiment was carried out on the SX-6 supercomputer at the German Climate Computing Center DKRZ.
Keywords
Citation
Andrews, D. G., J. R. Holton, and C. B. Leovy (1987), Middle Atmospheric Dynamics, Int. Geophys. Ser., vol. 40, 489 pp., Elsevier, New York. Angell, J. K., and J. Korshover (1962), The biennial wind and temperature oscillation of the equatorial stratosphere and their possible extension to higher latitudes, Mon. Weather Rev., 90, 1205– 1208. Baldwin, M. P., and D. O’Sullivan (1995), Stratospheric effects of ENSO-related tropospheric circulation anomalies, J. Clim., 8, 649–667. Baldwin, M. P., et al. (2001), The quasi-biennial oscillation, Rev. Geophys., 39, 179–229. Barnes, J. E., and D. J. Hofman (1997), Lidar measurements of stratospheric aerosol over Mauna Loa Observatory, Geophys. Res. Lett., 24, 1923–1926. Barnes, J. E., and D. J. Hofman (2001), Variability in the stratospheric background aerosol over Mauna Loa Observatory, Geophys. Res. Lett., 28, 2895–2898. Calvo, N., R. R. García, R. García Herrera, D. Gallego, L. Gimeno, E. Hernández, and P. Ribera (2004), Analysis of the ENSO signal in tropospheric and stratospheric temperatures observed by MSU, 1979–2000, J. Clim., 17, 3934–3946. Charney, J. G., and P. G. Drazin (1961), Propagation of planetary-scale disturbances from the lower into the upper atmosphere, J. Geophys. Res., 66, 83– 109. Dunkerton, T. J. (2003), Quasi biennial oscillation, in Encyclopedia of Atmospheric Science, vol. 3, pp. 1328–1336, edited by J. R. Holton et al., Elsevier, New York. Dunkerton, T. J., and M. P. Baldwin (1991), Quasi-biennial modulation of planetary-wave fluxes in the Northern Hemisphere winter, J. Atmos. Sci., 48, 1043– 1061. Dunkerton, T. J., and M. P. Baldwin (1992), Modes of interannual variability in the stratosphere, Geophys. Res. Lett., 19, 49–52. Dunkerton, T. J., and D. P. Delisi (1985), Climatology of the equatorial lower stratosphere, J. Atmos. Sci., 46, 3343– 3382. Edmon, H. J., Jr., B. J. Hoskins, and M. E. McIntyre (1980), Eliassen-Palm cross sections for the troposphere, J. Atmos. Sci., 37, 2600–2616. García Herrera, R., N. Calvo, R. R. García, and M. A. Giorgetta (2006), Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 reanalysis, J. Geophys. Res., 111, D06101, doi:10.1029/2005JD006061. Giorgetta, M. A., E. Manzini, and E. Roeckner (2002), Forcing of the quasi biennial oscillation from a broad spectrum of atmospheric waves, Geophys. Res. Lett., 29(8), 1245, doi:10.1029/2002GL014756. Giorgetta, M. A., E. Manzini, E. Roeckner, M. Esch, and L. Bengtsson (2006), Climatology and forcing of the quasi-biennial oscillation in the MAECAM5 Model, J. Clim., 19, 3882–3901. Gray, L. J. (2003), The influence of the equatorial upper stratosphere on stratospheric sudden warmings, Geophys. Res. Lett., 30(4), 1166, doi:10.1029/2002GL016430. Gray, L. J., S. Crooks, C. Pascoe, S. Sparrow, and M. Palmer (2004), Solar and QBO influences on the timing of stratospheric sudden warmings, J. Atmos. Sci., 61, 2777– 2796. Hamilton, K. (1984), Mean wind evolution through the quasi-biennial cycle in the tropical lower stratosphere, J. Atmos. Sci., 47, 2113–2125. Hamilton, K. (1998), Effects of an imposed quasi-biennial oscillation in a comprehensive troposphere-stratosphere-mesosphere general circulation model, J. Atmos. Sci., 55, 2393–2418. Holton, J. R., and H.-C. Tan (1980), The influence of the equatorial quasi biennial oscillation on the global circulation at 50 mb, J. Atmos. Sci., 37, 2200– 2208. Holton, J. R., and H.-C. Tan (1982), The quasi biennial oscillation in the Northern Hemisphere lower stratosphere, J. Meteorol. Soc. Jpn., 60, 140– 148. Karoly, D. J., and B. J. Hoskins (1982), Three dimensional propagation of planetary waves, Bull. Am. Meteorol. Soc., 60, 109– 123. Kodera, K., and Y. Kuroda (2002), Dynamical response to the solar cycle, J. Geophys. Res., 107(D24), 4749, doi:10.1029/2002JD002224. Kuroda,Y., and K. Kodera (1999), Role of planetary waves in the stratosphere troposphere coupled variability in the Northern Hemisphere winter, Geophys. Res. Lett., 26, 2375–2378. Labitzke, K. (1987), Sunspots, The QBO, and the Stratospheric Temperature in the North Polar Region, Geophys. Res. Lett., 14(5), 535– 537. Labitzke, K. (2005), On the solar cycle-QBO relationship: A summary, J. Atmos. Sci., 67, 45– 54. Labitzke, K., and H. van Loon (1988), Association between the 11-year solar cycle, the QBO and the atmosphere. Part I: The troposphere and stratosphere in Northern Hemisphere in winter, J. Atmos. Terr. Phys., 50, 197– 206. Manzini, E., M. A. Giorgetta, M. Esch, L. Kornblueh, and E. Roeckner (2006), The influence of sea surface temperatures on the Northern winter stratosphere: Ensemble simulations with the MAECHAM5 model, J. Clim., 19, 3863– 3881. Naito, Y., and I. Hirota (1997), Interannual variability of the northern winter stratospheric circulation related to the QBO and the solar cycle, J. Meteorol. Soc. Jpn., 75, 925–937. Naito, Y., and S. Yoden (2006), Behavior of planetary waves before and after stratospheric sudden warmings events in several phases of the equatorial QBO, J. Atmos. Sci., 63, 1637– 1649. Naujokat, B. (1986), An update of the observed quasi-biennial oscillation of the stratospheric winds over the Tropics, J. Atmos. Sci., 43, 1873– 1877. Niwano, M., and M. Takahashi (1998), The influence of the equatorial QBO on the Northern Hemisphere winter circulation of a GCM, J. Meteorol. Soc. Jpn., 76, 453–461. Ortland, D. A., W. R. Skinner, P. B. Hays, M. D. Burrage, R. S. Lieberman, A. R. Marshall, and D. A. Gell (1996), Measurements of stratospheric winds by the high resolution Doppler imager, J. Geophys. Res., 101, 10,351– 10,363. Pascoe, C. L., L. J. Gray, S. A. Crooks, M. N. Juckes, and M. P. Baldwin (2005), The quasi-biennial oscilation: Analysis using ERA-40 data, J. Geophys. Res., 110, D08105, doi:10.1029/2004JD004941. Pascoe, C. L., L. J. Gray, and A. A. Scaife (2006), A GCM study of the influence of equatorial winds on the timing of sudden stratospheric warmings, Geophys. Res. Lett., 33, L06825, doi:10.1029/2005GL024715. Plumb, R. A., and R. R. Bell (1982), A model of the Quasi-Biennial Oscillation on an Equatorial Beta-Plane, Q. J. R. Meteorol. Soc., 108, 335–352. Randel, W. J., F. Wu, R. Swinbank, and J. Nash (1999), Global QBO circulation derived from UKMO stratospheric analyses, J. Atmos. Sci., 56, 457–474. Ribera, P., C. Peña Ortiz, R. García Herrera, D. Gallego, L. Gimeno, and E. Hernández (2004), Detection of the secondary meridional circulation associated with the quasi-biennial oscillation, J. Geophys. Res., 109, D18112, doi:10.1029/2003JD004363. Roeckner, E., et al. (2003), The atmospheric general circulation model ECHAM5. Part I. Model description, MPI Rep. 349, 127 pp., Max Planck Inst. für Meteorol., Hamburg, Germany. Salby, M., and P. Callaghan (2003), Connection between the solar cycle and the QBO: The missing link, J. Clim., 13, 328– 338. Simmons, A. J., and J. K. Gibson (2000), The ERA-40 Project Plan, ERA-40 Proj. Rep. Ser. 1, 62 pp., Eur. Cent. for Medium-Range Weather Forecasts, Reading, U. K. van Loon, H., and K. Labitzke (1987), The Southern Oscillation. Part V: The anomalies in the lower stratosphere of the Northern Hemisphere in winter and a comparison with the quasi-biennial oscillation, Mon. Weather. Rev., 115, 357– 369.
Collections