Publication:
A photopolymerizable glass with diffraction efficiency near 100% for holographic storage

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2001-03-12
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Inst Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Permanent holographic storage has been demonstrated in a photopolymerizable organically modified silica glass. The glass was prepared by dispersing a titanocene photoinitiator and a high refractive index acrylic monomer in a porous silica matrix. This glass exhibits unprecedented sensitivity and refractive index change upon a moderate exposure to green light and can be fabricated in thickness up to several millimeters. A photopolymerizable storage medium of such a thickness with good holographic properties is needed for practical holographic storage devices. Lack of such medium has been considered the main obstacle in development of write-once holographic memories. In our glass, we have stored permanent volume holograms of diffraction efficiency approaching 100% and refractive index modulation up to 4.5 x 10(-3), making this photopolymerizable material suitable for use in holographic data storage.
Description
© 2001 American Institute of Physics. One of the authors (P.C.) would like to thank D. J. Carlsson, J. D. Worsfold, and F. del Monte for stimulating discussions. They also thank the Rectorate of the Complutense University for facilitating this work.
Keywords
Citation
1. D. Psaltis, F. Mok, Sci. Am. 273, 70 (1995). 2. G. T. Sincerbox, in Current Trends in Optics, edited by J. C. Dainty (Academic, London, 1994), Chap. 14. 3. R. A. Lessard and G. Manivannan, Proc. SPIE 2405, 2 (1995). 4. D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, Appl. Phys. Lett. 14, 159 (1969). 5. U.-S. Rhee, H. J. Caufield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, Opt. Eng. 32, 1839 (1993). 6. J. F. Heanue, M. C. Bashaw, and L. Hesselink, Science 265, 749 (1994). 7. H. Coufal, Nature (London) 393, 628 (1998). 8. C. J. Brinker and G. W. Scherer, Sol–Gel Science, The Physics and Chemistry of Sol–Gel Processing (Academic, San Diego, 1990). 9. J. J. Ebelmen, C. R. Acad. Sci. 19, 398 (1844). 10. H. Krug and H. Schmidt, New J. Chem. 18, 1125 (1994). 11. B. M. Monroe and W. K. Smothers, in Polymers for Lightwave and Integrated Optics, Technology and Applications, edited by L. A. Hornak (Marcel Dekker, New York, 1992), Chap. 5. 12. M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, and C. Boyd, Chem. Mater. 11, 247 (1999). 13. W. L. Wilson, K. Curtis, M. Tackitt, A. Hill, A. Hale, M. Schilling, C. Boyd, S. Campbell, L. Dhar, and A. Harris, Opt. Quantum Electron. 32, 393 (2000). 14. J. G. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980). 15. V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, J. Appl. Phys. 81, 5913 (1997). 16. A. B. Cohen, P. Walker, in Imaging Processes and Materials: Neblette’s Eighth Edition, edited by J. Sturge (Van Nostrand, New York, 1989). 17. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969). 18. C. Decker and A. D. Jenkin, Macromolecules 18, 1241 (1985). 19. P. Cheben, Ph.D. thesis, Complutense University of Madrid, 1996. 20. J. Marotz, Appl. Phys. B: Photophys. Laser Chem. 37, 181 (1985). 21. G. J. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, Opt. Lett. 23, 1310 (1998). 22. P. Cheben, T. Belenguer, A. NĂºĂ±ez, D. Levy, and F. del Monte, Opt. Lett. 21, 1857 (1996). 23. W. S. Colburn, Appl. Opt. 10, 1636 (1971). 24. G. Zhao, P. Mouroulis, J. Mod. Opt. 41, 1929 (1994). 25. C. R. Kagan, T. D. Harris, A. L. Harris, and M. L. Schilling, J. Chem. Phys. 108, 6892 (1998). 26. W. J. Tomlinson, E. A. Chandross, H. P. Weber, and G. G. Aumiller, Appl. Opt. 15, 534 (1976).
Collections