Publication:
Cathodoluminescence mapping and spectroscopy of Te-doped In_xGa_(1-x)Sb grown by the vertical Bridgman method under an alternating magnetic field

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2009-04
Authors
Mitric, A.
Piqueras de Noriega, Javier
Duffar, T.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Academic Press Ltd- Elsevier Science Ltd
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Cathodoluminescence (CL) in the scanning electron microscope and wavelength dispersive X-ray microanalysis (WDX) have been used to assess the homogeneity of a whole Te-doped In_xGa_(1-x)Sb ingot grown by the vertical Bridgman method under an alternating magnetic field. In particular, WDX has been used to determine the chemical composition of the ingot along the growth axis and several radial directions, while CL has been used to investigate the effective incorporation of In into the alloy, the nature and distribution of extended defects influencing the luminescence of the material and the shape evolution of the growth interfaces along the growth axis. CL spectroscopy reveals that doping with Te influences the band gap energy of this ternary compound through the Moss-Burstein effect.
Description
© 2008 Elsevier Ltd. All rights reserved. International Workshop on Beam Injection Assessment of Microstructure in Semiconductors (9. 2008 -2009. Toledo, España). This work was carried out in the framework of the Fifth Framework European Programme for research, Project HPRN-CT2001-00199. Support from MCYT through Project MAT2006-01259 is also acknowledged.
Unesco subjects
Keywords
Citation
[1] P.S. Dutta, H.L. Bhat, V. Kumar, J. Appl. Phys. 81 (1997) 5821. and references therein. [2] H. Mohseni, E. Michel, J. Sandoen, M. Razeghi, W. Mitchel, G. Brown, Appl. Phys. Lett. 71 (1997) 1403. [3] A.W. Bett, O.V. Sulima, Semicond. Sci. Technol. 18 (2003) S184. [4] N. Duhanian, T. Duffar, C. Marin, E. Diéguez, J.P. Garandet, P. Dantan, G. Guiffant, J. Cryst. Growth 275 (2005) 422. [5] C. Stelian, T. Duffar, J. Crystal Growth 275 (2005) e585. [6] A. Mitric, T. Duffar, C. Díaz-Guerra, V. Corregidor, L.C. Alves, C. Garnier, G. Vian, J. Crystal Growth 287 (2006) 224. [7] P.S. Dutta, B. Méndez, J. Piqueras, E. Diéguez, H.L. Bhat, J. Appl. Phys. 80 (1996) 1112. [8] P. Hidalgo, J.L. Plaza, B. Méndez, E. Diéguez, J. Piqueras, J. Phys.: Condens. Matter 14 (2002) 13211. [9] M.F. Chioncel, C. Díaz-Guerra, J. Piqueras, J. Vicent, V. Bermúdez, E. Diéguez, J. Crystal Growth 268 (2004) 52. [10] S. Iyer, L. Small, S.M. Hedge, K.K. Bajaj, A. Abdul-Fadl, J. Appl. Phys. 77 (1995) 5902. [11] E. Burstein, Phys. Rev. 93 (1954) 632. [12] T.S. Moss, Proc. Phys. Soc. London Sec. B 76 (1954) 775. [13] A.S. Filipchenko, L.P. Bolshakov, A. Naurizbaev, A.G. Braginskaya, A.N. Popov, Phys. Status Solidi (a) 48 (1978) K115. [14] P. Gladkov, E. Monova, J. Weber, Semicond. Sci. Technol. 12 (1997) 1409. [15] R. Pino, Y. Ko, P.S. Dutta, S. Guha, L.P. Gonzalez, J. Appl. Phys. 96 (2004) 5349. [16] G. Benz, R. Conradt, Phys. Rev. B 16 (1977) 843. [17] Ru-Yih Sun, W.M. Becker, Phys. Rev. B 10 (1974) 3436. [18] Kuong Hoo, W.M. Becker, Phys. Rev. B 14 (1976) 5372.
Collections