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Abstract: Tillage erosion has been identified as an irnportantglobal soil degradation process that has
to be accounted for when assessing the erosional itnpacts on soil productivity, environmental quality
or landscape evolution. In this paper, we present a summary of available data describing tillage
erosion. This provides insights in the controlling factors determining soil redistribution rates and
patterns by tillage for various itnplements used in both mechanized and non-mechanized agriculture.
Variations in tillage depth and tillage direction cause the largest variations in soil redistribution rates,
although other factors, such as tillage speed and irrplement characteristics, also play an important
role. In general, decreasing tillage depth and ploughing along the contour lines substantially reduce
tillage erosion rates and can be considered as effective soil conservation strategies. Implement
erosivities reported in literature, characterized by the tillage transport coefficient, are very consistent
and range in the order of 400-300 kgm~lyr~! and 70-26@ kg m~lyr~! for mechanized and non-
mechanized agriculture, respectively. Comparison of tillage erosion rates with water erosion rates
using a global data set indicates that tillage erosion rates are at least in the same order of magnitude
or higher than water erosion rates, in almost all cases. Finally, we discuss how tillage erosion increases
the spatial variability of soil properties and aftfects soil nutrient cycling. Considering the widespread
use of tillage practices, the high redistribution rates associated with the process and its direct effect

on soil properties, it is clear that tillage erosion should be considered in soil [andscape studies.
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I Introduction tillage erosion only become apparent after sev-
Unlike water and wind erosion, whose effects eral decades oftillage throush variations in soil
are often dramatic and can be easily identified properties (the appearance of subsoil at the

in the landscape, the extent and severity of surface) and the development of tillage-related



landforms like tillage ®anks. It is therefore no
surprise that attention of soil erosion research
during the last decades has focused heavily on
sheet and rill erosion (Govers et al., 1999).
However, a large body of information, from a
wide ranse of research domains, is available in
literature that indicates that tillage is responsi-
ble for the movement of soil material. These
papers focus on the investigation of tillage
effects on (i) the dispersion of weed seeds
(Marshall and Hopkins, 1990; Marshall and
Brain, 1999), (i) the incorporation of fertilizers
or crop residues (Staricka et al., 1990; 1991]),
(iii) the dispersion of soil amendments or con-
stituents in long-term field experiments
(Sibbesen et al., 1985; 2000; Sibbesen and
Andersen, 1985; Sikbesen, 1986), (iv) the
redistribution of archaeolosical artefacts in
asricultural land (Reynolds, 1988;Yorstonet a/.,
1990) or (v) on the design and performance of
tillage implements (Reaves and Schafer, 1975;
Kermis, 1978). Althoush these studies demon-
strated the existence of substantial soil translo-
cation by tillage operations, the identification of
tillage erosion was hampered by the fact that
they were conducted on level land, so that
the assessment of tillage erosion rates and
patterns was not possisle.

Mech and Free (1942) were the first to
carry out systematic tillage erosion experi-
ments with tillage implements common for
that time. They concluded that soil move-
ment was far from insignificant and its inten-
sity was related to slope sradient. Follow-up
experiments by Petersen (1960) and by
Weinblum and Stekelmacher (1963) corrobo-
rated these findings but were never published
in international literature. In addition to this, a
considerable amount of qualitative informa-
tion on the importance of tillage erosion was
published. This was mainly related to the for-
mation of lynchets or soil banks (Papendick
and Miller, 1977) and the development of ter-
races (Aase and Pikul, 1995). Other papers
pointing to the importance of tillage erosion
were: Dejong et al. (1983); Kachanoski et al.
(1985); Revel and Guiresse (1995). Some
authors relate the variability in crop yield and

soil quality to the possible effects of tillage
erosion. Miller et al. (1988) and Moulin et al.
(1994) found a significantly lower soil organic
matter content and crop yield on slope con-
vexities. Also Verity and Anderson (1990)
observed lower grain yields on upper convex
slope positions.

Researchers working in relative isolation in
eastern Europe have since long recognised
soil tillage as an important erosion process on
asricultural land (Khachatryan, 1985). Various
experimental studies of tillage translocation
and tillage erosion were made (Czyzyk, 1955;
Kiburys, 1989; Martini, 2005), including
investigations on terrace formation dynamics
due to tillase (Lobotka, 1955).

The development of the 137Cs technique
has contributed significantly to the recogni-
tion of the tillage erosion process. The tech-
nique allows to assess the total soil
redistribution rates and patterns in a land-
scape over a timescale of several decades,
independent of the process causing it. Early
studies whereby the 137Cs technique was
used showed a rather unexpected spatial pat-
tern of soil erosion: highest soil losses
occurred on convexities and deposition in hol-
lows (eg, Dejong et al., 1983; Quine and
Walling, 1991). This spatial pattern did not
asree with the pattern that can e expected
to result from water erosion. Furthermore,
comparison of 137Cs derived erosion rates and
patterns with results of water erosion models
often showed poor agreement (Dejons et al.,
1986; Soileau et al., 1990; Bernard and
Laverdiere, 1992). Other studies supplicd
additional evidence that soil erosion occurred
on unexpected locations on sloping agricul-
tural land, es, studies of soil profile truncation
(es, Daniels et al., 1985; Verity and Anderson,
1990); of spatial variation in crop productivity
(e, Miller et al., 1988; Cao et al., 1994) or
whereby elevation differences between
asricultural land and adjacent non-cultivated
land were used to assess soil erosion (Govers
et al., 1993).

It was only in the late 1980s (eg, Kiburys,
1989) and early 1990s (es, Lindstrom et al.,



1992; Gevers of al., 1994; Lobb 2t a/, 19995)
that systernatic studies of tillage translecatien
and eresien were rmade. These experimental
studies shewed that tillage results in a net
mevement eof seil, leading te a net seil less
(tillage eresion) frem cenvex landscape pesi-
tiens and a net seil gain (tillage depesition) in
cencave landscape pesitiens. Later, studies
cembininghish-reselutien!37Cs data with gee-
rmerphelegical rmedels (Gevers =f al., 1996;
Quinestal, 1997) and additienaltilloge eresion
experiments (eg, Guiresse and Revel, 1995;
Peesen #f al., 1997; Lobb =f a/, 1999; Van
Muysenet al., 1999, Mentsemery <t al., 1999,
Quine =t &/, 199%3a) previded further evidence
for substantial tillage induced seil eresien and
depesition under mechanized agriculture.

At present, there are ever 8@ research
papers in the literature that specifically deal
with tillage eresien (Figure 1) Initially, these
studies fecused on the experimental identifi-
catien ef centrelling variables and the assess-
ment of tillage eresien rates (rnestly using
I37Cs as a rnarker of seil rnevement) Maere
recently, tillage eresion effects en seil quality
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and preductivity in varieus agre-ecelegical
envirenments have been decumented (Liand
Lindstrem, 2001; Kesmas #f al., 200]; de
Alba, 200]; Quine and Zhang, 2002; da Silva
and Alexandre, 2004, Li of al, 2004,
Heclkrathet al., 2005) and tillage eresion sim-
ulatien rmedels have been developed (Gevers
et al, 1996; Van @est 2f al., 2000b; 2003b; de
Alba, 2003, Scheer!| #f a/., 2004; Quine and
Zhane, 2004c) While early studies on tillage
eresien strenely fecused en mechanized
agriculture, recent studies have shewn that
substantial tillage eresien alse eccurs in devel-
eping ceuntries with animal er man pewered
tillage teels, especially when tillage is per-
fermed in dissected landscapes en steep
slepes (Kirnare «t al., 2005; Turlelboomet al.
1997; 1999, Thapa et al., 1999%; 1999, Quine
et al, 1999%; 1999C; Nyssen ef al, 2000;
Dercen #f al., 2003; Zhane 2t al., 2004b)
Censequently, tillage eresien is new reces-
nized as an impertant glebal seil degradation
precess that has te be acceunted for when
assessing the eresienal impacts en seil preduc-
tivity (eg, Heclirathet al , 2005), envirenmental
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literature
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quality (eg, Lal, 2001) or landscape evolution
(eg, Quine et al., 1997).

Although a large body of information on
tillage erosion is now available, attempts to
identify the major controls on the process and
to quantify the importance of tillage erosion
in the total soil redistribution on arable lands
are very rare. This article presents the princi-
ples of tillage erosion, reviews estimates of
controlling variables, describes strategies and
practical considerations in soil conservation
strategies, and assesses the overall impor-
tance of tillage erosion.

Il The principle of tillage erosion
I Definition

Whenever soil is cultivated, tillage translocation,
which is the displacement of the cultivation
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layer, takes place. This translocation is expressed
as mass of soil moved by tillage in a specific
direction per meter width. Translocation can
also be expressed as a depth-averaged length,
ie, the distance the till-layer is translocated.
Experimental studies have shown that slope
gradient has a dominant influence on soil
translocation during tillage operations, as it is a
gravity-driven process (Lindstrom et al., 1992;
Govers et al., 1994; Lobb et al., 1995; Poesen
et al., 1997; Van Muysen et af., 1999; Quine
et al., 1999a). The basic nature of this process
is illustrated in Figure 2. Generally, soil translo-
cation rates are highest when tillage is per-
formed in the downslope direction on steep
slopes. Translocation rates decrease gradually
when moving to less steep slopes and are
lowest when tillage is performed in the ups-
lope direction on steep slopes. Consequently,

Figure 2 Principle of tillage erosion. (A) Variability of soil translocation in a hilly
landscape. Soil translocation by tillage will result in soil loss on convex slope positions
because there is an increase in slope gradient. Conversely, deposition takes place in
concave slope positions. (B) In dissected landscapes (field boundaries, grass strips,
terraces), tillage leads to soil loss on the uppermost portion of the slope segment and
deposition occurs in lower portions, leading to the formation of soil banks. The lengths
of the arrows reflect the magnitude of the process



soil translocation by tillage varies within
landscapes and a net movement of soil occurs
on sloping land. For example, the downslope
soil movement after a downslope tillage
operation, is not fully compensated for by
complementary upslope tillage operation,
leading to a net downslope movement of
soil.

Various definitions for tillage erosion are
given in literature. Lindstrom et al. (2001])
define it as ‘the net movement of soil downs-
lope throush the action of mechanical imple-
ments’; while Lokl et al. (1999) use the
definition ‘the net downslope translocation of’
soil material by tillage’. Lok et al. (1995)
provide a broad definition: ‘the loss and
accumulation of soil resulting from the variable
translocation of soil by tillage’. Here, both
component of the erosion process, ie, the ero-
sion of soil material at specific landscape posi-
tions (tillage erosion) as well as the subsequent
deposition of this eroded material at other posi-
tions (tillage deposition), are explicitly denoted.

2 Patterns and field evidence of

tillage erosion

Soil translocation by tillage will result in soil
loss on convex slope positions such as crests
and shoulder slopes because there is an
increase in slope gradient, thus an increase in
soil translocation rate. Conversely, soil depo-
sition will take place in concave slope posi-
tions. The spatial signatures of tillage erosion
differ fundamentally from those of water ero-
sion: soil loss by tillage will be most intense on
landscape positions where water erosion is
minimal (ie, on convexities and near upslope
field boundaries) while areas of soil accumula-
tion by tillage are often areas where water
erosion is maximal (ie, hollows) (see Figure 3
for illustration). This has also implications for
contemporary landform evolution on asricul-
tural land: while continuing water erosion
leads to increased incisions in concavities and
a sradual increase in slope angle on convex
slopes, tillage erosion will smoothen the land-
scape and reduce slope angles by moving soil
from convexities to concavities.

Tillage erosion can be evidenced from dif-
ferences in soil properties along a hillslope.
Intensive tillage erosion results in substantial
soil truncation and within field redistribution
of soil and soil constituents. Continuing
removal of topsoil and the subsequent lower-
ing of the ploush layer on convexities lead to
the incorporation of nutrient-depleted subsoil
material in the plough layer. At the same time,
tillage accumulates soil at concavities where a
deep soil enriched in nutrients develops. In
areas with undulating toposraphy, the
appearance of subsoil material is indicative for
tillage erosion (Figure 4).

Field boundaries represent physical barri-
ers that interrupt soil flux by tillage
(Papendick and Miller, 1977; Dabney et a!.,
1999; Van Oost et al., 20002). These lines of
zero flux produce a net soil accumulation on
the upslope side or a net soil loss on the
lower slope side. When a cross-slope bound-
ary between fields is located at mid-slope
positions, opposite balances of net soil loss or
soil gain take place on the two sides of the
boundary with the consequent formation of
a linear step, ie, lynchet or soil bank, along
the boundary. The formation of soil banks
due to tillage erosion is illustrated in Figure 5.
Two types of tillage erosion should therefore
be considered when analysing tillage erosion
rates: (i) tillage erosion due to a chanse in
slope (topography-based tillage erosion) and
(ii) tillage erosion due to the effect of field
boundaries (field boundary tillage erosion). It
is clear that field boundary tillage erosion is
important in dissected landscapes where
tillage is conducted on small fields (es, ter-
race asriculture in mountainous areas
(Derconetal., 2003), whereas toposraphical
tillage erosion is likely to be dominant in areas
of mechanized agriculture which are associ-
ated with larse fields (Van Oost et al.,
20002).

3 Equations describing tillage transioc ation
and erosion

The most widespread used tillage model in
experimental and modelling studies is based
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Figure 3 Typical spatial patterns ef tillage and water eresien simulated with the
WaTEM medel (Van @est et al., 20003a). Cell size is 6 X 6m. Height difference
between tep and bettem ef the ficld is appreximately 12m

on the rnedel propesed by Gevers of &/ direction of tillage, @, (kgm1), can be calcu-
(1994) Here, tillage eresienis censideredas a lated as:

diffusientype precess using the fellewing rea- _

sening. The rate of seil translecatien in the Q, =p,dD (N



Figure 4 Typical spatial varialility ef seils in agricultural hndscapes of relling tepesraphy.
In the picture, truncated seil prefiles (of clear celeur due te the presence ef calcic mate-
rial frem an eriginal sussurface seil herizen) are predeminant in the upper part of slepes
and cenvexities and are ndicati/e fer tillage eresien (Castilla-La Mancha, Central Spain)

Figure 5 Fiecld beundaries represent a physical barrier for seil transpert by tillage. Seil
accumulates at the upslepe side while severe truncatien takes place at the dewnslepe
side, leading te the fermatien ef seil banks. The seil banks in the picture are up te
1.6m in height (Castilla-La Mancha, Central Spain)



where g, is the soil bulk density (ke m—3), d is
the average soil translocation distance in the
direction of tillagse (m), and B is the tillage
depth (m). Tillage experiments have found
mean translocation distances as a result of a
single tillage operation to e linearly, and
inversely, related to slope (Govers et al.,
1994):

d=a+bS )

where S is the slope tangent (positive up-
slope; nesative downslope), and & and b are
regression constants. Assuming opposing
directions in successive tillage operations and
that uphill slopes are designated as positive
slope and downhill slopes are designated as
negative slopes, the average net downslope
soil translocation d,, per tillage operation may
be expressed as

I =(a+bS)—(a—bS):bS 3)
2

and the net downslope rate of soil transloca-

tion after the two tillage operations will be:

Q,,=Dp,bS (4

Using the continuity equation for sediment
movement on a hillslope and assuming the
x-axis to e positively oriented in the downs-
lope direction, the tillage erosion or accumu-
lation rate may then be written as:

o Dpp Rk, 2
i) 7 "
where h is the heisht at a siven point of the
hillslope and k,;(= —Bpb) is a constant. This
means that the rate of tillage erosion may e
characterized by (i) a proportionality factor,
k,,, which is referred to as the tillage transport
coefficient, and (ii) the rate of chanse in slope
in the direction of tillage. The tillage transport
coefficient is an expression of tillage erosivity
and permits the comparison of different
tillage implements.

It is important to note that this diffusion-
type model of tillage translocation and erosion

is limited by the following necessary assump-
tions: (i) tillage depth and soil bulk density do
not vary in space, (ii) tillage soil translocation
can be expressed as a linear, univariate func-
tion of the slope gradient and (iii) tillage is con-
ducted in opposing directions. However, the
latter assumption is not necessary when esti-
mating topography-based tillage erosion. In this
case, the tillage transport coefficient is inde-
pendent of the tillage direction applied, ie, it
can be used to estimate erosion rates for alter-
nating up- and downslope tillage operations or
consecutive up- or downslope operations.

Il Factors controlling tillage
translocation and erosion

The process of tillage erosion can e seen as a
function of the erosivity of a siven tillage
operation (7z) and the erodibility of the culti-
vated landscape (Lz) (Loblb et al., 1999):

E =1l L) ©)

where £, is the tillage erosion rate, resulting
from a specific tillage operation. This general
concept is illustrated in Figure 6. Tillage ero-
sivity, T, the potential for a given tillage event
to erode soil within a landscape, is a function
of several physical and human parameters.
These include implement characteristics (/,,),
(es, tool shape, width, lensth), operational
parameters (/,) (es, tillage depth, speed, tillage
direction), the responsiveness of the tillage
operator to changing landscape and soil condi-
tions (/) (eg, manual depth adjustment to
compensate for power requirement shortage).

E.=f{ 1,1) 1)

Landscape erodibility L is the propensity of'a
landscape to be eroded by tillage, and is deter-
mined by topographical parameters (/,) (es,
slope sradient, curvature); field parameters
(/;) (es, field size and shape) and physical
properties of the soil (/) (eg, soil texture, soil
moisture content, the soil’s resistance to dis-
placement by tillase):

Fo=fU,1.1) ()
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It isevident that these facters interact. Fer
example, eachtillage implement has a recem-
mended depth and speed of eperation.
Deviatiens fremthese values may eccur, beth
in respense te changing pewer requirement
and availability, as well as te spatial variatiens
inseil preperties, especially in complextepes-
raphy. This will net enly affect the implement
performance, but it may alse influence tillage
translecatien and, censequently tillage ere-
sien. Similarly, the tillage direction applied is
decided upen by the farmer, based on infer-
matien en field size and shape in cembinatien
with tepegraphical characteristics.

As landscape eredibility is a static variable
which is difficult te centrel, mest seil censer-
vatienstudies fecus en the variables reducing
tillage eresivity. In the fellewing sectien,
experirnental derived tillage transpert ceeffi-
cients reperted in literature will be used te
assess tillage eresivity in terms eof implement
and eperatienal characteristics for twe

categeries of tillage implernents, ie, rneuld-
beard and chisel/cultivater. In additien, the
tillage eresivity of secendary tillage eperations
and anirnal/man-pewered teels are discussed.

I Meuldboard tillage

Maeuldbeard tillage is the standard prirmary
tillage technique in many agricultural systems
and is therefere the rnest studied implernent
in tillage eresien experiments. Meuldbeard
tillage is essentially a twe-dimensienal precess
characterized by a displacernent cempenent
in the tillage and ene perpendicular te tillage
direction (turning directien) Twe types of
meuldbeard tillage experiments can be identi-
fied: (i) experirnents cenducted parallel te the
steepest sradient (up- and dewnslepe tillage,
UD) where enly the translecatien in the
tillage direction is censidered and (i) experi-
ments aleng the centeur (centeur tillage, C)
where enly translecatien in the turning
directien is censidered.



Table 1 Comparison of tillage transport coefficient (k,;), available in or calculated
from the literature for mouldboard tillage

Source Country Tillage Tillage Bulk k,, Tillage
speed depth density (kgm~!per direction®
V kmh=) B (m) p, (kgm=3) operation)

Lindstrom et a/., 1992 USA 1.6 0.24 1350 363 (C
Van Muysen et a!., 2002 Belgium 4.9 0.26 1540 184 @
St Gerontidis et a/., 2001 Greece 4.5 0.2 1420 134 @©
St Gerontidis et al., 2001 Greece 4.5 0.3 1420 252 @
St Gerontidis et al., 2001 Greece 4.5 04 1420 360 @
de Alba, 2001 Spain 4.5 0.24 1370 164 (C
Heckrath et al., 2006 Penmark 4.9 0.23 1529 49 &
Heckrathet a/., 2006 Penmark 4.0 0.26 1490 132 G
Petersen, 1960 USA 3.6 0.16 1239 64 €
Montgomery et &/., 1999 USA 3.6 0.23 1310 109 ©
Heckrath et al., 2006 Penmark 4.9 0.24 1555 281 S
Heckrath et a/., 2006 Penmark 4.1 0.24 1449 239 E)
Heckrathet a/., 2006 Penmark 4.1 0.22 1423 137 S
Quine et a/., 2003 New Zealand 7.0 0.17 1350 324 ub
Lindstrom et a/., 1992 USA 1.6 0.24 1350 330 up
Govers et a!., 1994 Belgium 4.5 0.28 1350 234 up
Van Muysen et &/., 1999 Spain 1.8 0.33 1070 245 ub
Van Muysen et a/., 1999 Spain 2.4 0.15 1650 85 ubp
Van Muysen et a!., 2002 Belgium 3 0.25 1500 224 ubp
Van Muysen et a/., 2002 Belgium 5.4 0.21 1560 169 ub
Lobbet al., 1995 Canada 4 0.15 1350 184 6] J
Lobbet a/., 1999 Canada 6.2 0.23 1350 346 ubp
Revel and Guiresse, 1995 France 6.5 0.27 1350 263 up
Mech and Free, 1942 USA 356 0.03 1155 24 9] J
St Gerontidis et al., 2001 Greece 4.5 0.2 1420 153 up
St Gerontidis et a/., 2001 Greece 4.5 0.3 1420 383 up
St Gerontidis et a/., 2001 Greece 4.5 04 1420 670 ] J
de Alba, 2001 Spain 4.5 0.24 1370 204 up
Heckrath et al., 2006 Penmark 4.9 0.25 1517 200 up
Heckrath et a/., 2006 Penmark 6.3 0.26 1507 335 up
da Silvaet al., 2004 Portugal Sl 0.39 1630 e up
Quine and Zhang, 2004b UK 519 0.21 1374 101 ubp
Kosmas et a/., 2001 Greece 4.5 0.18 1598 63 ] J
Kosmas et a/., 2001 Greece 4.5 0.25 1598 159.8 ] J

* Tillage directien: centeur (C), slantwize (S), up and dewwn (UD)

In Table I, the results of 34 mouldboard
tillage experiments are listed with their opera-
tional characteristics and tillage transport
coefficient. 24 experiments were performed
under up- and downslope (or slantwise) tillage
while 10 are contour tillage experiments. T he
experiments exhibit a wide range in tillage
speed (range 1.4-7.6kmh~!) and tillage depth

(range 0.083-0.4m). Althoush these studies
report only averase values for the tillage speed
and depth applicd during the experiment, they
provide a valuable basis for assessing the oper-
ational effects on mouldboard tillage erosivity.
We used a non-linear regression of the form:

k, =‘pb.“v’ 9



A similar appreach has previeusly been used
by (Van Muysen ot al., 2002) Equatien (9) is
capable of predicting the trends ebserved in
the published data (12 = 0.67; P < 0.000])

(Figure 7a and Table 5) The regressien analy-
sis indicates that tillage eresivity largely
depends on tillage depth while the effect of
tillage speed is less preneunced. Hewever,
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Figure 7 Relatienship between predicted tillage transpert cecflicient and reperted
k,; values for data sets en meuldseard tillage for up- and dewnslepe tillage (UP) and
centeur tillage (C) using (A) equatien 9 and (B) equatien 10



the inclusion of a dummy variable to account
for the direction of tillage, that is:

k, = ap,BVT (19)

whereT equals | forcontourtillage and 2 for up-
and downslope tillage, considerably improved
the resression (r2 = 0.79; P < 0.0001) (Fisure
T and Table 5).

Figure & shows the tillage transport coeffi-
cients for up- and downslope and contour
tillage for different values of tillage speed and
depth based on this statistical model. Tillage
depth is the most important factor. For exam-
ple, the k, p-value increases with 141% if
tillage depth changes from 0.2 to 0.3m
(V = 4kmh-!). This effect corroborates
findings »y Van Muysen et al. (2002), St
Gerontidis et al. (200]) and Heckrath et al.
(2006), reporting values for & between | and 2.
The effect of tillagse depth on mouldboard
erosivity can be explained as follows: tillage
erosion rates, and consequently tillage erosiv-
ity, increase linearly with tillage depth as more
soil is subject to transport (see equation 5).
The additional increase in mouldboard erosiv-
ity is related to the larger volume soil occupies
after ploughing. Gravitational forces amplify
the spreading of this larger volume of soil dur-
ing downslope tillage while the spreading is
hampered during upslope tillage. Tillage speed
also increases mouldboard erosivity but to a
lesser extent. For example, the k,, p-value
increases with only 20% if tillage speed
changes from 3 to 4kmh-! (D = 0.25m).
Van Muysen et al. (2002) and Heckrath et al.
(2006) reported values between 0.39 and
0.96 for @, which is comparable to the value
of 0.6 derived here.

This analysis shows that tillage direction
has an important control on mouldsoard ero-
sivity. The value of 0.7 for y means that the
ratio between k,,-values for up- and down-
slope (k,; p) tillage and contour tillage (k,;, -) is
1.64, or that up- and downslope mouldboard
tillage is more erosive than contour tillage.
Experimental studies where contour and up-
and downslope tillage were directly compared
report similar ratios of 1.22 (Van Muysen

et al., 2002), 1.14-1.836 (St Gerontidis et a!.,
200]) and 1.24 (De Alba, 2001). In contrast,
Lindstrom et a/. (1992) found that contour
tillage was slightly more erosive than up- and
downslope tillage (ratio 0.91).

The differential behaviour in soil transloca-
tion dynamics for contour and up- and
downslope tillage stronsgly sugsests that a
l-dimensional analysis of soil translocation,
where slope sradient only varies in a single
direction, is not applicable in real 2-
dimensional landscapes. Moulboard tillage is
characterized by a displacement component
in the tillage and turning direction and each of
these can be affected by the slope in the
tillage and turning direction. De Allba (2001),
Quine and Zhang (2004a) and Heckrath et al.
(2006) showed that the simultaneous change
of slope sradients in both tillage and turning
direction may exert an import influence on
mouldboard erosivity. These are important
findings as under normal asricultural practice
on hummocky terrain simultaneously chang-
ing slope sradients in tillage and turning direc-
tion will be rather common as field geometry,
more than topography, determines the tillage
direction. Heckrath et al. (2006) presented
the first study where the effect of simultane-
ously changing slope sradients in tillage and
turning direction were investisated. They
concluded that contour tillagse was the least
erosive, followed by slantwise tillage turning
the soil upslope (k,, = 110 ke m~!) while up-
and downslope tillagse was considered to be
the most erosive (k,, = 180-210 ke m~1).

2 Chisel till age

In contrast with mouldboard tillage, relatively
few tillage erosion studies report on chisel
experiments and the variables controlling
chisel erosivity are scarcely studied. In
Table 2, all available experimental data is
summarized. Althoush the typical working
depth of a chisel operation is smaller than
mouldboard operations, k,; values reported
are only slightly lower than those for mould-
board tillage. The observedk,, values could e
described by a model resression similar to
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Table 2 Comparison of tillage transport coefficient (k,), available in or calculated

from the literature for chisel tillage

Source Country  Tillage speed Tillage Bulk density k,; (kgm~!
V (kmh~1) depth B (m) p, (kgm=3) per operation)
Van Muysen et al., 2000 Belgium 5.8 0.15 1560 225
Van Muysen et a/., 2000 Belgium 1.2 0.2 1250 545
Poesen et a/., 1997 Spain 2.3 0.16 1582 282
Poesen et a/., 1997 Spain 253 0.14 1582 139
Govers et al., 1994 Belgium 4.5 0.15 1350 111
Lobbet a/., 1999 Canada 9.6 0.17 1580 215
Mech and Free, 1942 USA 3.6 0.06 1155 13
Quine et /., 1999a Spain 2.2 0.19 1371 657
da Silva et a/., 2004 Portugal 3.6 0.11 1600 [49)
da Silva et a/., 2004 Portugal 3.4 0.19 1600 20

equation (9) (Table 3, r2 = 0.839, p = 0.005).
Tillage depth strongly affects tillage erosivity
while the effect of tillage speed was not sis-
nificant. This sharply contrasts with the find-
ings of Van Muysen et al. (2000). Using the
results of a chisel experiment where speed
and depth were varied, they sugsested that
chisel erosivity increases almost linearly with
tillage speed and depth. However, it is evident
that the model parameters derived here are
based on a rather limited data set covering a
wide range of soil conditions and chisel imple-
ments. It is likely that most of the observed

variability is related to implement characteris-
tics. Studies reporting high chisel k,; values
(Poesenet al., 1997; Quine et al., 1999a) were
conducted with a duckfoot chisel at very low
speeds. Van Muysen et al. (2000) sussested
that the wide tines used on a duckfoot chisel
were responsible for the high translocation
rates observed by Poesen et al. (1997) and
Quine et al. (1999a). Typically, the implement
coverasge for a duckfoot chisel is ¢. 3 times
higher than a chisel plough. It is clear that
further experimental research is needed to
assess the factors controlling chisel erosivity.

Table 3 Summary of results from regression analysis for mouldboard, chisel and non-

mechanized tillage implements

a « B Y 12
Mouldboard
k, = ap, D~ V# .17 2.10 0.58 - 0.67
(n = 34) (p=0.027) (p <0.000) (p = 0.065) (p <0.000)
k= ap,DxVETY  0.97 2.21 0.57 0.67 0.78
(n = 34) (p =0.008) (p <0.00i) (p=10.027) (p = 0.0015) (p <0.000)
Chisel
k, = ap, D~ (n = 6) 1157 4.84 - - 0.89
(p=0.52) (p = 0.005) (p = 0.005)
Non-mechanized
ky=apD*(n="71) 0.358 0.71 — - 0.68
(p = 0.06) (p =0.03) (p=0.02)

p denetec statictical significance



3 Secondary tillage operations

Althoush mouldboard and chisel plough tillage
make up the major part of an annual sequence
of'tillage operations under mechanized agricul-
ture, they do generally not result in a surface
that is smooth enoush for seeding or plantins.
In many cases, mouldboard and chisel tillage is
followed by harrowing or discing to reduce
clod size and surface smoothening before
seeding is carried out. InTable 4, £, values for
harrow, cultivator and disc implements are
shown. Tillage erosivity for harrow and culti-
vator tillage is significantly lower than mould-
board and chisel tillage. In contrast, da Silva
et al. (2004) and Lobb et al. (1999) report very
high values for disc implements. da Silva et al.
(2004) found that tillage depth, and to a lesser
extent tillage speed and disc characteristics,
had a major influence on disc erosivity.

4 Animal- and man-powered tillage tools

Only recently studies addressed tillage ero-
sion by animal and man-powered tillage tools,
which are common in present-day farming
systems in developing countries. Lewis and
Nyamulinda (1996), Turkelboom et al. (1997)
and Zhang et al. (2004a; 2004b) demon-
strated that manual tillage on steep slopes
leads to significant downslope movement of
soil. Rymshaw et al. (1997), Thapa et al.
(1999a; 1999), Quine et al. (1999B) and

Nyssen et al. (2000) pointed out that shallow
mouldboard or ard ploughing using animal
traction can be very erosive. Table 5 summa-
rizes all available tillage transport coefficients
for animal- and man-powered tillage tools.
The tillage transport coefficients are much
lower than those associated with mechanized
tillage operations and range between 30 and
250 ke m~! per operation (compare with Table
1). This must be attributed to the typically
lower tillage speeds and working depths asso-
ciated with man- and animal-powered tillage
tools as well as substantially different imple-
ment characteristics. Thapa et a/. (1999a)
compared up- and downslope tillage and
contour tillase with an animal-powered
mouldboard. They concluded that up- and
downslope tillage with an animal-powered
tool was 1.27 times more erosive than con-
tour tillage, which is in the same order of mas-
nitude as the ratios observed for mechanized
mouldboard tillage.

5 Crop rotation tillage transport coefficients

In most agricultural systems, multiple tillage
operations with different implements are
required for crop cultivation. It is therefore
useful not to express tillage erosivity on an
implement basis, but to consider the erosivity
of a typical sequence of tillase operations
associated with a specific cropping system.

Table 4 Comparison of tillage transport coefficient (k,), available in or calculated
from the literature for secondary tillage operations

Source Country Tillage Tillage Bulk ke Implement
speed depth density o,  (kgm~! per
V (kmh~1) D (m) (kgm3) operation)
Lobb et al., 1999 Canada 6.9 0.15 1580 13 cultivator
Mech and Free, 1942 USA n.a. 0.08 n.a. 28 cultivator
Mech and Free, 1942 USA n.a. 0.12 n.a. 8 harrow
Van Muysen and Belgium 6.8 0.07 1130 123 rotary harrow
Govers, 2002 and seeder
da Silvaet al., 2004 Portugal 5.3 0.07 1650 9-333 harrow disc
da Silva et a/., 2004 Portugal 2.9 0.03 1178 18770 harrow disc
Lobb et al., 1999 Canada 3.0 0.17 1580 369 tandem disc

n.a.: datanet availaele



Table 5 : Comparison of tillage transport coefficient (k,), available in or calculated
from the literature for non-mechanized agriculture

Source Country Tillage Tillage Bulk k,, Tillage
speed depth density (kgm~!per direction®
V kmh=)) B (m) p, (kgm=3) operation)
Nyssen et a/., 2000 Ethiopia 1.1 0.03 1143 68 @
Thapa et al., 199%9a Philippines n.a. 0.2 730 162 &
Quine et /., 1999¢ China n.a. 0.17 1300 31 @&
Thapa et al., 1999b Philippines n.a. 0.2 1000 1192 G
Dercon et al., unpublished  Ecuador n.a. 0.13 1203 83 ¢
data

Rymshaw et al., 1997 Venezuela n.a. 0.2 1270 29a ©
Thapa et al., 199%b Philippines n.a. 0.2 1000 1522 up
Quine et a/., 1999¢ China n.a. 0.17 1300 250 8] J
Turkelboom et a!., 1999 Thailand n.a. 0.035 1100 (™ up
Zhang et al., 2004b China n.a. 0.22 1310 141m up
Kimaro et al., 2005 Tanzania n.a. 0.05 1200 34-108m ub

2 Animal-pewered tillage; ™ manual tillage
Tillage directien: centeur (C), clantwize (S), up and dewvn (UD)
n.a: datanet availaele

Lok et al. (1995) reported on the results of a
series of tillage erosion experiments in Canada
wherely the erosivity of a sequence of con-
ventional tillase operations (I mouldboard
pass, 2 tandem disc passes and | tine cultivator
pass) was studied. The tillage transport coefti-
cient for this sequence was estimated as
413-134 kem~!. Van Muysen et al. (2006)
studied a typical tillase sequence for mecha-
nized agriculture, including multiple mould-
board, chisel and harrow passes, during a
period of three years. These authors derived a
tillage transport coefficient of 781 kg m=lyr-1,
which is in sood agreement with data
reported in literature. This study also showed
that the tillagse transport coefficient of a
sequence of tillagse operations can be reason-
ably well predicted by summing the transport
coefficients olbtained from controlled, single
pass experiments.

Crop rotation tillage transport coefficients
can also be derived from 137Cs data. This
technique uses present-day '3’Cs inventories
to optimize the parameters of spatially distrils-
uted soil erosion-deposition models that take
into account all relevant processes (ie, water
erosion, tillage erosion, and soil loss due to

crop harvesting), so that the observed 137Cs
redistribution pattern is predicted as accu-
rately as possible (Govers et al., 1996; Quine
etal., 1997; Quine, 1999; Schuller et al., 2003;
Van Oost et al., 2003a; Schoorl et al., 2004).
Table 6 presents the £, values derived from
137Cs data. The clearest characteristic of the
data is the high degree of similarity in the £,
values for mechanized agriculture, ranging

Table 6 Long-term tillage transport
coefficients inferred from !3/Cs data

Source Country k,; value
(kgm™lyr™)
Mechanized agriculture
Govers et al., 1996 UK 397
Goverset al., 1996 UK 348
Van @ost et a/., 2003a  Belgium 9%
Quine et a/., 1996 UK 300
Quineet al., 1994 Belgium 550
Heckrath et al., 2005  Benmark 456
Non-mechanized agriculture
Quine et /., 1999b China 108
Quine et a/., 1999b Lesotho 243
Quine et &/., 1999b Zimbabwe 113
Quine et al., 1997 China 20-40




between 350 and 550 kem-! year-!. It is
important to note that the k,; values derived
from this technique represent average tillage
erosion intensities over the last 35-45 years
(depending on the sampling date) and are
therefore lower than present-day k,; values,
based on tillage erosion experiments, due to
the increase of mechanical power during the
last decades.

Althoush the erosivity of individual tillage
operations used in non-mechanized agriculture
is substantially lower than those used in mech-
anized asriculture (Table 6), crop rotation
tillage transport coefficients reported are rela-
tively high. Dercon et al. (unpublished data)
obtained £, values between [68 and
681 ke ! year! for a typical cropping cycle in
the Andes. Nyssen et al. (2000) report an
annual k,, value between 68 and 272 kg m~!
year—! for agriculture in the Ethiopian high-
lands while Thapa et & (199%9a; 1999%b)
obtained k,;, values between 260 and 710 kg m-!
year~! for various tillage systems in intensive
cropping systems in the humid tropics.

IV Rates of tillage erosion
While tillage transport coefficients allow
comparison of potential tillage erosion inten-
sity between tillage implements and manage-
ment options, actual rates of tillage erosion
are dependent on the interaction of tillage
translocation with topography. In Table 7, we
present tillage erosion rates reported in litera-
ture, based on direct measurement, !3Cs
data or derived from modelling studies.
Erosion rates reported range between 3 and
70 Mgha~!yr-! for mechanized asriculture.
Despite the fact that tillase erosivity is gener-
ally higsher for mechanized agriculture, erosion
rates reported for non-mechanized agricul-
ture are also higsh and range between 3 and
600 Megha-lyr-!. The high values for non-
mechanized agriculture must be attributed to
the fact that most studies report rates on
steep slopes in intensive cropping systems.
The significance of the tillage erosion
process in the total soil redistribution on
arable land can be derived from Table 7.

Here, we report the relative contribution of
tillage in the total soil redistribution on arable
land for Europe, North and South America,
Aftrica, Asia and Oceania. Two features are
noteworthy. First, the data clearly indicates
that, under mechanized agriculture, tillage
erosion rates are at least in the same order of’
magnitude or higher than water erosion rates,
in almost all cases. Second, tillage erosion also
contributes substantially to the total soil
redistribution under non-mechanized agricul-
ture. These estimates of the relative impor-
tance of tillage and water erosion are
consistent with the Canadian Agri-
Environmental Indicator Project (McRae
et al., 2000), which is at present the only
attempt to assess the significance of tillage
erosion at the regional scale. It was concluded
that approximately 50 % of the cropland in
Canada was subject to unsustainable levels of’
tillage erosion (>6Msgha-lyr-!) while only
approximately 5% of the cropland was subs-
ject to unsustainalle levels of water erosion.
Equivalent data are not available for other
regions. Direct estimation of tillage erosion
rates for large areas is not always possible as
detailed information about topographic cur-
vature would e required, which cannot be
reliably deduced from the larse-scale DEMs
which are presently available. In contrast to
slope sradient (first terrain derivative), slope
curvature (second terrain derivative) cannot
be representedrealistically, and is significantly
underestimated, when derived from a coarse
DEM (ie, +20 m resolution).

V Consequences for soil quality

Close relationships between the spatial distri-
bution of tillage erosion and the spatial pat-
terns of total C, N, P, texture, soil depth, rock
fragment cover and above sround biomass
have been reported (Van Oost et al., 2000b;
Kosmas et al., 2001; Quine and Zhang, 2002;
Liet al., 2004 ; Heckrath et al., 2005). These
results have provided evidence that tillage
erosion operates like a conveyor belt, trans-
ferring soil and associated constituents from
convexities to concavities. During cultivation,



Table 7 Comparison of tillage and water erosion rates, available in or calculated from

the literature

Authors Country Tillage rate Water rate Ratio®
(Mgha~lyr=1) (Mgha~lyr=)
Mechanized agriculture
St Gerontidis et al., 2001 Greece 28 1 23
Tsaraet al., 2001 Greece 4.0-18 >15
Van @ost et al., 2003a Belgium 10 2 3
Lobbet al., 1995 Canada Rz 2.3
Poesen et al., 1997 Spain 40-60 10
Kosmas et a/., 2001 Greece >
Quine et /., 2003 New Zealand 19 >
Quine and Zhang, 2002 UK >
Quine et al., 1997 Belgium >1
Govers et al., 1996 UK >
Montgomery et a/., 1997 USA >1
Govers et al., 1994 Belgium 1
Van @ostet a/., 20002 Belgium 8.7 9.2 0.9
Schuller et a/., 2003 Chile 0.5-1.2
Babney et a/., 1999 USA 81 0.3-1.5
Lobb and Kachanoski, 1999 Canada 0.2-1
Basher and Ross, 2002 New Zealand 0.15
Non-mechanized agriculture
Thapa et al., 1999a Philippines 106601 2.7
Quine et /., 1999b Lesotho 19 14 1.4
Quine et /., 199%b /imbabwe 29 2.5 1.2
Thapa et al., 2001 Philippines >z
Rymshaw et al., 1997 Venezuela >
Berconet a/., 2003 Ecuador >1
Nyssen et /., 2001 Ethiopia 1
Nyssen et al., 2000 Ethiopia ]
Lewis and Nyamulinda, 1996 Rwanda 68 1
Li and Lindstrom, 2001 China 16.9 17.9 0.9
Quine et al., 1999¢ China 14-55 10-29 0.5-5.5
Quine et /., 1999b China 18 34 0.5
Turkelboom et /., 1997 Thailand 3-18 25-70 0.3
Li and Lindstrom, 2001 China 8.8 47.5 0.2
Quine et al., 1997 China <l
Zhanget al., 1998 China <=

» Tillage eresien/water erecien rate ratie

there is a net loss of plough soil from convex
slope elements. However, the plough layer
depth is maintained here by incorporation of
nutrient-poor subsoil into the ploush layer.
Consequently, the plough soil on these
eroded convexities becomes depleted in sur-
face-applied or surface-immobilized nutrients

and the products of weathering. This
depleted ploush soil is also translocated away
from the convexities and, therefore, areas of
no (or limited) net soil loss on linear slope ele-
ments below convexities may also be charac-
terized by nutrient-depletion of the plough
soil. Conversely, ploush soil accumulates in



concavities throush downslope translocation
from the upslope landscape elements. These
areas, therefore, develop overdeepened
ploush soil enriched in nutrients. Therefore,
translocation of soil by tillage erosion is a
major contributor to within-field variability in
soil properties. Model simulations indicate
that continuing tillage will further increase
the spatial variability of soil properties
(Quine and Zhang, 2002; Van Oost et al.,
2003b; de Alba et al., 2004). Other studies
provide evidence that tillage erosion has a
deleterious impact on crop production (Aase
and Pikul, 1995; Schumacher et al., 1999;
Kosmaset al., 2001; Tsaraet al., 2001). More
recently, Bakker et al. (2005) report on the
effect of erosion-induced reductions in crop
productivity on land-use change and con-
cluded that the spatial pattern on land use is
significantly affected by crop yield-erosion
relationships. Tillage induced spatial variation
in soil properties and crop yields is, however,
not limited to mechanized agriculture. The
importance of tillage in redistributing soil and
soil constituents has also been recognized for
non-mechanized agriculture, especially on
terraced fields (Li and Lindstrom, 2001;
Thapaet al., 2001; Dercon et al., 2003).

VI Discussion and conclusion
Althoush the tillage erosion experiments
reported in literature were conducted in a
variety of agricultural environments in terms
of soil type, surface conditions and implement
characteristics, the k,; values for different
tillage implements are very consistent: the
data available stronsly sussests that tillage
depth is the most important factor affecting
tillage erosivity. Tillage erosivity increases
exponentially with tillage depth. Reducing
tillage depth can therefore be considered as
an effective soil conservation stratesy. Tillage
direction also has an important control on
tillage erosivity: tillage along the contour
lines is substantially less erosive than tillage
conducted up and down the slope.

Until now, very little attention has been
paid to the role of implement shape on tillage

erosivity. Althoush tillage erosivity could be
well described as a function of tillage speed,
depth, direction and soil bulk density, the
results of some experiments indicate that this
may have an influence. For example, the k,,
values reported by (Quine and Zhang, 20042)
and (Heckrath et al., 2006) for mouldboard
tillage is much lower than other values
reportedusing similarimplements with identi-
cal operational characteristics and soil condi-
tions. It is possible that implement shape may
have caused lower tillage erosivity in these
specific cases.

k,, values that are representative for whole
crop cycle can be estimated by summing the
individual £, values for the different imple-
ments used. For mechanized agriculture, val-
ues reported are in the order of
470-780kem~! year~!. The lower end of
crop rotation tillage transport coefficients
estimates for non-mechanized agriculture are
generally lower, ie, 68-260kem~! year—!,
However, £, values, reported for intensive
cropping systems with a hish frequency of
tillagse operations are in the same order of
masgnitude as those associated with mecha-
nized asriculture.

Tillage erosion rates reported in literature
indicate that this process significantly con-
tributes to the removal and redistribution of
topsoil on rolling arable land. Direct compari-
son of tillage erosion with water erosion rates
for a data set covering the whole world indi-
cates that tillage erosion rates are at least in
the same order of magnitude or higher than
water erosion rates, in almost all cases. It is
worthwhile to compare the assessment of
tillage erosion with estimates of water erosion
intensity. Most available statistics on the
extent and severity of soil erosion on arable
land are unreliable (Boardman, 1998). This
large uncertainty must be attributed to the
hish spatial and temporal variability of the
processes involved (climate, soil erodibility,
connectivity between upland landscape ele-
ments and streams, landscape erodibility role
of'extreme events, etc), which hampers accu-
rate measurements. In contast, tillage erosion



estimates are only dependent on topographi-
cal complexity (ie, slope curvature) and tillage
management (ie, tillage transport coefficient)
and are therefore quite robust. In the previous
parasraphs, we have shown that tillage ero-
sivity assessments are very consistent and
allow to estimate k,; values with a relatively
high precision.

Tillage erosion also has marked effects on
soil quality: tillage will increase the spatial vari-
ation in soil properties and lead to a nutrient-
depleted soil on convexities while a deep soil,
enriched in nutrients, develops on concavities.
This has important implications for dynamic
processes such as soil organic carbon (SOC)
and nitrogen turnover and storage in soils.
With the prosressive accumulation of nutri-
ent-rich soil in low-lying areas of fields exposed
to concentrated overland flow and leaching the
risk of nutrient loss is prone to increase. Soil
redistribution by tillage also results in a sulb-
stantial modification of the landscape toposra-
phy, which has direct consequences for surface
and subsurface hydrology (es, variability of’
infiltration, overland flow paths. ..). Studies
have also reported on the close linkages
between tillage erosion and crop productivity.
The data available in literature strongly sus-
gests that he impact of tillage erosion on soil
quality and productivity will vary with the
agro-environment. Shallower soils on hum-
mocky terrain in drier climates, where soil
depth is an important factor, suffer more
adverse effects than soils in moderate climates.

Considering the widespread use of tillage
practices and the high redistribution rates
associated with the process, it is clear that
tillage erosion should be considered in soil
landscape studies and when developing envi-
ronmentally sustainable farming practices.
Although we now have a basic understanding
of the most important controls, the conse-
quences of tillage erosion for soil profile evolu-
tion and soil nutrients dynamics requires
more attention. The integration of models of’
soil redistribution and soil property evolution
with models of soil nutrient cycling therefore
represents a major challensge.
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