Publication:
Cathodoluminescence characterization of ZnO : Te microstructures obtained with ZnTe and TeO_2 doping precursors

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2008-05
Authors
Iribarren, A.
Piqueras de Noriega, Javier
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Academic Press Ltd- Elsevier Science Ltd
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
ZnTe- and TeO_2-doped ZnO nanostructures and microstructures were obtained by a vapour-solid process by sintering compacted ZnO powder mixed with each precursor. Cathodoluminescence (CL) measurements show that if TeO_2 is used, then the defect band, due mainly to O vacancies (V-O), tends to reduce and even disapear, which indicates that Te reacts with ZnO and passivates the O vacancies better than if ZnTe is used as a precursor. With both precursors, a CL peak at about 3.08-3.17 eV, which overlaps with that of ZnO at about 3.26 eV, indicates that ZnTe_xO_(1-x) forms.
Description
© 2007 Elsevier Ltd. All rights reserved. International Conference on Physics of Ligh-Matter Coupling in Nanostructures (PLMCN7)(7. 2007.La Havana, Cuba). One of the authors (A.I.) would like to thank MEC and Universidad Complutense de Madrid, Spain, for a research grant under SAB2005-0018. This research was supported by project MAT2006-01259.
Unesco subjects
Keywords
Citation
[1] S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Progr. Mater. Sci. 50 (2005) 293. [2] S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, X.H. Zhang, S.J. Chua, J. Appl. Phys. 98 (2005) 013505. [3] T. Makino, K. Tamura, C.H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, H. Koinuma, J. Appl. Phys. 92 (2002) 7157. [4] J. Grym, P. Fern´andez, J. Piqueras, Nanotechnology 16 (2005) 931, and references there in. [5] A. Urbieta, P. Fern´andez, J. Piqueras, Appl. Phys. Lett. 85 (2004) 5968. [6] D. Maestre, A. Cremades, J. Piqueras, J. Appl. Phys. 97 (2005) 044316. [7] L. Khomenkova, P. Fern´andez, J. Piqueras, Cryst. Growth Des. 7 (2007) 836. [8] J. Piqueras, E. Kubalek, Solid State Commun. 54 (1985) 745. [9] K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79 (1996) 7983. [10] T. Tatsumi, M. Fujita, N. Kawamoto, M. Sasajima, Y. Horikoshi, Japan J. Appl. Phys. 43 (2004) 2602. [11] H. He, Y. Wang, Y. Zou, J. Phys. D 36 (2003) 2972. [12] R. Radoi, P. Fern´andez, J. Piqueras, M.S. Wiggins, J. Solis, Nanotechnol. 14 (2003) 794. [13] B.J. Jin, S. Im, S.Y. Lee, Thin Solid Films 366 (2000) 107. [14] H.L. Porter, J.F. Muth, J. Narayan, J.V. Foreman, H.O. Everitt, J. Appl. Phys. 100 (2006) 123102. [15] Y. Ortega, P. Fern´andez, J. Piqueras, Nanotechnology 18 (2007) 115606
Collections