Publication:
Cathodoluminescence study of Te-doped ZnO microstructures grown by a vapour-solid process

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2008-04
Authors
Iribarren, A.
Piqueras de Noriega, Javier
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Netherlands
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Sintering of a mixture of TeO_2 and ZnO powders under an Ar flux leads to the formation of elongated Te-doped ZnO nano- and microstructures on the sample surface. The growth of the structures occurs via a vapour-solid process. Cathodoluminescence (CL) and energy dispersive spectroscopy (EDS) measurements show an inhomogeneous incorporation of Te along the growth axis of the structures. An enhancement of the band edge emission upon Te doping is attributed to the passivation of oxygen vacancies by Te atoms, which reduces the deep energy level-related recombination path.
Description
© Springer Science+Business Media, LLC 2008. Acknowledgements One of the authors (A.I.) would like to thank MEC Spain and UCM for mobility financing and facilities under SAB2005-0018. This research was partially supported by Project MAT2006-01259.
Unesco subjects
Keywords
Citation
1. Makino T, Tamura K, Chia CH, Segawa Y, Kawasaki M, Ohtomo A, Koinuma H (2002) J Appl Phys 92:7157 2. Tan ST, Chen BJ, Sun XW, Fan WJ, Kwok HS, Zhang XH, Chua SJ (2005) J Appl Phys 98:013505 3. Pearton SJ, Norton DP, Ip K, Heo YW, Steiner T (2005) Progr Mater Sci 50:293 4. Shim M, Wang C, Norris DJ, Guyot-Sionnest P (2001) MRS Bull 1005 5. Dalpian GM, Chelikowsky JR (2006) Phys Rev Lett 96:226802 6. Galli G (2005) Nature 436:32 7. Erwin SC, Zu L, Haftel MI, Efros AL, Kennedy TA, Norris DJ (2005) Nat Lett 436:91 8. Baltramiejunas R, Ryzhikov VD, Gavryushin V, Kazlauskas A, Raciukaitis G, Silin VI, Juodzbalis D, Stepankevicius V (1992) J Luminescence 52:71 9. Grym J, Fernández P, Piqueras J (2005) Nanotechnology 16:931 10. Maestre D, Cremades A, Piqueras J (2004) J Appl Phys 97:044316 11. Nogales E, Méndez B, Piqueras J (2005) Appl Phys Lett 86:113112 12. Hidalgo P, Méndez B, Piqueras J (2005) Nanotechnology 16:2521 13. Magdas DA, Cremades A, Piqueras J (2006) Appl Phys Lett 88:113107 14. Khomenkova L, Ferna´ndez P, Piqueras J (2007) Crystal Growth Design 7:836 15. Piqueras J, Kubalek E (1985) Sol Stat Comm 54:745 16. Vanheusden K, Warren WL, Seager CH, Tallant DR, Voigt JA, Gnade BE (1996) J Appl Phys 79:7983 17. Dingle R (1969) Phys Rev Lett 23:579 18. Tatsumi T, Fujita M, Kawamoto N, Sasajima M, Horikoshi Y (2004) Jpn J Appl Phys 43:2602 19. He H, Wang Y, Zou Y (2003) J Phys D Appl Phys 36:2972 20. Radoi R, Ferna´ndez P, Piqueras J, Wiggins MS, Solis J (2003) Nanotechnology 14:794 21. Porter HL, Muth JF, Narayan J, Foreman JV, Everitt HO (2006) J Appl Phys 100:123102 22. Ortega Y, Fernández P, Piqueras J (2007) Nanotechnology 18:115606 23. Jin BJ, Im S, Lee SY (2000) Thin Solid Films 366:107 24. Castaing O, Granger R, Benhlat JT, Lemoine D, Verdy O, Triboulet R (1995) Semicond Sci Technol 10:983 25. Bürger H, Kneipp K, Hobert H, Vogel W, Kozhukharov V (1992) J Non-Cryst Sol 151:134 26. Iribarren A, Castro-Rodríguez R, Caballero-Briones F, Peña JL (1999) Appl Phys Lett 74:2957 27. Amutha R, Subbarayan A, Sathyamoorthy R (2006) Cryst Res Technol 41(12):1174 28. Rakhshani AE (2004) Semicond Sci Technol 19:543
Collections