Publication:
Thermal stability of intermediate band behavior in Ti implanted Si

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2010-11
Authors
Mártil de la Plaza, Ignacio
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science BV
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Ti implantation in Si with very high doses has been performed. Subsequent Pulsed Laser Melting (PLM) annealing produces good crystalline lattice with electrical transport properties that are well explained by the Intermediate Band (IB) theory. Thermal stability of this new material is analyzed by means of isochronal annealing in thermodynamic equilibrium conditions at increasing temperature. A progressive deactivation of the IB behavior is shown during thermal annealing, and structural and electrical measurements are reported in order to find out the origin of this result.
Description
© 2010 Elsevier B.V. All rights reserved. The authors would like to acknowledge the Nanotechnology and Surface Analysis Services of the Universidad de Vigo C.A.C.T.I. for ToF-SIMS measurements and C.A.I. de Técnicas Físicas of the Universidad Complutense de Madrid for ion implantation and e-beam evaporation experiments. This work was made possible thanks to the FPI (Grant no .BES-2005-7063) of the Ministerio de Educación y Ciencia de España. This work was partiallys upported by the Projects NUMANCIA-II (No. S2009ENE-1477) funded by the Comunidad de Madrid and GENESIS-FV (No. CSD2006-00004) funded by the Spanish Consolider National Programme.
Unesco subjects
Keywords
Citation
[1] A. Luque,A. Martí, Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels, Physical Review Letters 78, (1997) 5014–5017. [2] M. Wolf, Limitations and possibilities for improvement of photovoltaic solar energy converters. Considerations for earth surface operation, Proceedings of the IRE48(1960)1246–1263. [3] P. Wahnón, C. Tablero, Ab initio electronic structure calculations for metallic intermediate band formation in photovoltaics materials, Physical Review B65, (2002) 165115, 1–10. [4] K.M. Yu, W. Walukiewicz, J. Wu, W. Shan, J.W. Beeman, M.A. Scarpulla, O.D. Dubon, P. Becla, Diluted II–VI oxide semiconductors with multiple band gaps, Physical Review Letters 91,(2003) 246403, 1–4. [5] C. Tablero, Survey of intermediate band material candidates, Solid State Communications 133, (2005), 97–101. [6] K.M. Yu, W. Walukiewicz, J.W. Ager III, D. Bour, R. Farshchi, O.D. Dubon, S.X. Li, I.D. Sharp, E.E. Haller, Multiband GaNAsP quaternary alloys, Applied Physics Letters 88,(2006),092110, 1–3. [7] A. Martí, N. López, E. Antolín, E. Cánovas, C. Stanley, C. Farmer, L. Cuadra, A. Luque, Novel semiconductor solar cell structures: the quantum dot intermediate band solar cell, Thin Solid Films 511–512, (2006) 638–644. [8] P. Palacios, K. Sánchez, J.C. Conesa, J.J. Fernández, P. Wahnón, Theoretical modelling of intermediate band solar cell materials based on metal-doped chalcopyrite compounds, Thin Solid Films 515, (2007) 6280–6284. [9] A. Luque, A. Martí, E. Antolín, C. Tablero, Intermediate band versus levels in non-radiative recombination, Physica B382, (2006) 320–327. [10] P.W. Anderson, Absence of diffusion in certain random lattices, Physical Review 109, (1958) 1492–1505. [11] N.F. Mott, Metal–insulator transition, Review of Modern Physics 40,(1968) 677–683. [12] J. Olea, M. Toledano-Luque, D. Pastor, G. González-Díaz, I. Mártil, Titanium doped silicon layers with very high concentration, Journal of Applied Physics 104, (016105)(2008) 1–3. [13] J. Olea, G. González-Díaz, D. Pastor, I. Mártil, Electronic transport properties of Ti-impurity band in Si, Journal of Physics D: Applied Physics 42, (085110) (2009) 1-7. [14] G. González-Díaz, J. Olea, I. Mártil, D. Pastor, A. Martí, E. Antolín, A. Luque, Intermediate band mobility in heavily titanium-doped silicon layers, Solar Energy Materials and Solar Cells 93, (2009) 1668–1673. [15] E. Antolín, A. Martí, J. Olea, D. Pastor, G. González-Díaz, I. Mártil, A. Luque, Life time recovery in ultrahighly titanium-doped silicon for the implementation of an intermediate band material, Applied Physics Letters 94, (2009) 042115, 1–3. [16] K. Sánchez, I. Aguilera, P. Palacios, P. Wahnón, Assessment through first-principles calculations of an intermediate-band photovoltaic material based on Ti-implanted silicon: interstitial versus substitutional origin, Physical Review B79, (2009)165203, 1–7. [17] C.W. White, S.R. Wilson, B.R. Appleton, F.W. Young Jr, Supersaturated substitutional alloys formed by ion implantation and pulsed laser annealing of group-III and group-V dopants in silicon, Journal of Applied Physics 51, (1980) 738–749. [18] M.H. Clark, K.S. Jones, Strain compensation in boron–indium coimplanted laser thermal processed silicon, Journal of Applied Physics 97, (2005) 093525, 1–4. [19] D. Pastor, J. Olea, M. Toledano-Luque, I. Mártil, G. González-Díaz, Pulsed laser melting effects on single crystal gallium phosphide, in: Proceedings of the 7th IEEE Spanish Conference of Electron Devices, Santiago de Compostela (Spain), 2009, pp.42–45. [20] D. Pastor, J. Olea, M. Toledano-Luque, I. Mártil, G. González-Díaz, Laser thermal annealing effects on single cristal gallium phosphide, Journal of Applied Physics 106, (2009) 053510, 1–6. [21] S. Wolf, Silicon processing for the VLSI era, Process Integration, vol. 2, Lattice Press, Sunset Beach, CA, 1990 pp. 121–131. [22] J. Narayan, C.W. White, M.J. Aziz, B. Stritzker, A. Walthuis, Pulsed excimer (KrF) laser melting of amorphous and crystalline silicon layers, Journal of Applied Physics 57, (1985) 564–567. [23] J. Olea, M. Toledano-Luque, D. Pastor, E. San-Andrés, I. Mártil, G. González-Díaz, High quality Ti-implanted Si layers above the Mott limit, Journal of Applied Physics 107, (2010) 103524, 1–5. [24] K.M. Yu, W. Walukiewicz, M.A. Scarpulla, O.D. Dubon, J. Wu, J. Jasinski, Z. Liliental-Weber, J.W. Beeman, M.R. Pillai, M.J. Aziz, Synthesis of GaN_(x)As_(1-x) thin films by pulsed laser melting and rapid thermal annealing of N^(+)-implanted GaAs, Journal of Applied Physics 94, (2003)1043–1049. [25] K.M. Yu, W. Walukiewicz, J. Wu, W. Shan, M.A. Scarpulla, O.D. Dubon, J.W. Beeman, P. Becla, Diluted ZnMnTe oxide: amulti-band semiconductor for high efficiency solar cells, Physica Status Solidi(b)241, (2004) 660–663. [26] J. Olea, D. Pastor, M. Toledano-Luque, E. San-Andrés, I. Mártil, G. González-Díaz, High quality Ti-implanted Si layers above solid solubility limit, in: Proceedings of the 7th IEEE Spanish Conference on Electron Devices, Santiago de Compostela, Spain, 2009, pp.38–41. [27] S. Hocine, D. Mathiot, Titanium diffusion in silicon, Applied Physics Letters 53, (1988) 1269–1271. [28] T. Stark, L. Gutowski, M. Herden, H. Grünleitner, S. Köhler, M. Hundhausen, L. Ley, Ti-silicide formation during isochronal annealing followed by insitu ellipsometry, Microelectronic Engineering 55, (2001) 101–107. [29] B.X. Liu, K.Y. Gao, H.N. Zhu, Metal silicides synthesized by high current metal-ion implantation, Journal of Vacuum Science and Technology B17, (1999) 2277–2283. [30] W.-K. Wan, S.-T. Wu, Theformation of TiSi_(2) by RTA processing, Thin Solid Films 298, (1997) 62–65. [31] F. Mammoliti, M.G. Grimaldi, F. La Via, Electrical resistivity and Hall coefficient of C49, C40, and C54 TiSi_(2) thin-film phases, Journal of Applied Physics 92, (2002)3147–3151. [32] J. Olea, D. Pastor, I. Mártil, G. González-Díaz, J. Ibáñez, R. Cuscó, L. Artús, Raman and Rutherford backscattering characterization of Ti implanted Si above Mott limit, in: Proceedings of the 2009 MRSF all Meeting, Boston, USA, doi: 10.1557/PROC-1210-Q04-10,in press.
Collections