Publication:
Self-sustained webs of polyvinylidene fluoride electrospun nanofibers at different electrospinning times: 2. Theoretical analysis, polarization effects and thermal efficiency

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2013-04-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier B. V.
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
A novel theoretical model that considers the gas transport mechanisms through the inter-fiber space of self-sustained electrospun nanofibrous membranes (ENMs) is developed for direct contact membrane distillation (DCMD). The theoretical model involves the structural characteristics of the ENMs, the heat transfer mechanisms and the nature of mass transport through the self-sustained web. The permeate fluxes of different ENMs prepared with different electrospinning times and therefore different thicknesses were predicted for different feed temperatures and sodium chloride salt concentrations up to 60 g/L. The used ENMs exhibit different parameters such as liquid entry pressure of water, inter-fiber space, void volume fraction, thickness, etc. In contrast to what reported in other theoretical MD studies considering Bosanquet equation with equal mass transport contributions for Knudsen diffusion and ordinary molecular diffusion, in this study the contribution of each mass transport mechanism was determined. It was found that the Knudsen contribution increases with the increase of the ratio of the mean electrospun fiber diameter to the inter-fiber space. The predicted permeate fluxes were compared with the experimental ones and reasonably good agreements between them were found. The temperature polarization coefficient (theta) and the vapor pressure polarization coefficient (psi) both increase with the thickness of the ENMs, whereas the concentration polarization coefficient ([beta) decreases indicating the dominant effect of the temperature polarization effect. beta was found to be higher for the ENMs having higher permeate fluxes and for greater feed temperatures, whereas it decreases slightly with the increase of the feed salt concentration. The thermal efficiency (EE) is enhanced with the increase of the feed temperature being in all cases for all studied ENMs greater than 78.8% and the heat transfer by conduction less than 20% of the total heat transferred through the ENMs.
Description
© 2013 Elsevier B.V. The authors gratefully acknowledge the financial support of the I+D+I Project MAT2010-19249 (Spanish Ministry of Science and Innovation). M. Essalhi is thankful to the Middle East Desalination Research Centre (MEDRC, Project 06-AS-02).
UCM subjects
Keywords
Citation
[1] M. Khayet, Membranes and theoretical modeling of membrane distillation: a review, Adv. Colloid Interface Sci., 164 (1–2) (2011), pp. 56–88 [2] M. Khayet, T. Matsuura, Membrane Distillation: Principles and Applications, Elsevier, The Netherlands (2011) [3] M. Khayet, M.C. García Payo, Nanostructured Flat Membranes for Direct Contact Membrane Distillation, PCT/ES2011/000091, WO/2011/117443, 2011. [4] C. Feng, K.C. Khulbe, T. Matsuura, R. Gopal, S. Kaur, S. Ramakrishna, M. Khayet, Production of drinking water from saline water by air-gap membrane distillation using polyvinylidene fluoride nanofiber membrane, J. Membr. Sci., 311 (2008), pp. 1–6 [5] C. Feng, K.C. Khulbe, S. Tabe, Volatile organic compound removal by membrane gas stripping using electro-spun nanofiber membrane, Desalination, 287 (2012), pp. 98–102 [6] J.A. Prince, G. Singh, D. Rana, T. Matsuura, V. Anbharasi, T.S. Shanmugasundaram, Preparation and characterization of highly hydrophobic poly(vinylidene fluoride)–clay nanocomposite nanofiber membranes (PVDF–clay NNMs) for desalination using direct contact membrane distillation, J. Membr. Sci., 397–398 (2012), pp. 80–86 [7] M. Essalhi, M. Khayet, Self-sustained webs of polyvinylidene fluoride electrospun nanofibers at different electrospinning times: 1. Desalination by direct contact membrane distillation, J. Membr. Sci., doi:10.1016/j.memsci.2013.01.023, this issue. [8] Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol., 63 (2003), pp. 2223–2253 [9] D. Li, Y. Xia, Electrospinning of nanofibers: reinventing the wheel?, Adv. Mater., 16 (2004), pp. 1151–1170 [10] I.S. Chronakis, Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process: a review, Mater. Process. Technol., 167 (2005), pp. 283–293 [11] M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, J.H. Wendorff, J.H. Wendorf, Nanostructured fibers via electrospinning, Adv. Mater., 13 (2001), pp. 70–72 [12] S. Megelski, J.S. Stephens, D.B. Chase, J.F. Rabolt, Micro- and nanostructured surface morphology on electrospun polymer fibers Macromolecules, 35 (2002), pp. 8456–8466 [13] X. Wang, C. Drew, S.H. Lee, K.J. Senecal, J. Kumar, L.A. Samuelson, Electrospun nanofibrous membranes for highly sensitive optical sensors, Nano Lett., 2 (2002), pp. 1273–1275 [14] S.S. Choi, Y.S. Lee, C.W. Joo, S.G. Lee, J.K. Park, K.S. Han, Electrospun PVDF nanofiber web as polymer electrolyte or separator, Electrochim. Acta, 50 (2004), pp. 339–343 [15] Z. Ma, M. Kotaki, S. Ramakrishna, Electrospun cellulose nanofiber as affinity membrane, J. Membr. Sci., 265 (2005), pp. 115–123 [16] R. Gopal, S. Kaur, Z. Ma, C. Chan, S. Ramakrishna, T. Matsuura, Electrospun nanofibrous filtration membrane, J. Membr. Sci., 281 (2006), pp. 581–586 [17] R.S. Barhate, S. Ramakrishna, Nanofibrous filtering media: filtration problems and solutions from tiny materials: Review, J. Membr. Sci., 296 (2007), pp. 1–8 [18] L.F. Dumée, K. Sears, J. Schütz, N. Finn, C. Huynh, S. Hawkins, M. Duke, S. Gray, Characterization and evaluation of carbon nanotube Bucky–Paper membranes for direct contact membrane distillation, J. Membr. Sci., 351 (2010), pp. 36–43 [19] X. Yan, G. Liu, F. Liu, B.Z. Tang, H. Peng, A.B. Pakhomov, C.Y. Wong, Superparamagnetic tribloc copolymer/Fe2O3 hybrid nanofibers, Angew. Chem. Int. Ed., 40 (2001), pp. 3593–3596 [20] S. Borkar, B. Gu, M. Dirmyer, R. Delicado, A. Sen, B.R. Jackson, J.V. Badding, Polytetrafluoroethylene nano-microfibers by jet blowing, Polymer, 47 (2006), pp. 8337–8343 [21] R.G. Flemming, C.J. Murphy, G.A. Abrams, S.L. Goodman, P.F. Nealey, Effects of synthetic micro-and nano-structured surfaces on cell behavior, Biomaterials, 20 (1999), pp. 573–588 [22] T.A. Desai, Micro-and nanoscale structures for tissue engineering constructs, Med. Eng. Phys., 22 (2000), pp. 595–606 [23] A. Curtis, C. Wilkinson, Nanotechniques and approaches in biotechnology, Trends Biotechnol., 19 (2001), pp. 97–101 [24] H.G. Graighead, C.D. James, A.M.P. Turner, Chemical and topographical patterning for directed cell attachment, Curr. Opin. Solid State Mater. Sci., 5 (2001), pp. 177–184 [25] C.T. Laurencin, A.M. Ambrosio, M.D. Borden, J.A. Cooper Jr., Tissue engineering: orthopedic applications, Annu. Rev. Biomed. Eng., 1 (1999), pp. 19–46 [26] H. Li, Y. Ke, Y. Hu, Polymer nanofibers prepared by template melt extrusion, J. Appl. Polym. Sci., 99 (2006), pp. 1018–1023 [27] K.W. Lawson, D.R. Lloyd, Review: membrane distillation, J. Membr. Sci., 124 (1997), pp. 1–25 [28] M.E. Findley, V.V. Tanna, Y.B. Rao, C.L. Yeh, Mass and heat transfer relations in evaporation through porous membranes, AIChE J., 15 (1969), pp. 483–489 [29] R.B. Evans, G.M. Watson, E.A. Mason, Gaseous diffusion in porous media at uniform pressure, J. Chem. Phys., 35 (6) (1961), pp. 2076–2083 [30] R.W. Schofield, A.G. Fane, C.J.D. Fell, Gas and vapour transport through microporous membranes. I. Knudsen–Poiseuille transition, J. Membr. Sci., 53 (1990), pp. 159–171 [31] K.W. Lawson, D.R. Lloyd, Membrane distillation: II. Direct contact MD, J Membr. Sci., 120 (1996), pp. 123–133 [32] K.W. Lawson, D.R. Lloyd, Membrane distillation: I. Module design and performance evaluation using vacuum membrane distillation, J. Membr. Sci., 120 (1996), pp. 111–121 [33] J. Phattaranawik, R. Jiraratananon, A.G. Fane, Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation, J. Membr. Sci., 215 (2003), pp. 75–85 [34] M. Khayet, A. Velázquez, J.I. Mengual, Modelling mass transport through a porous partition: effect of pore size distribution, J. Non-Equilib. Thermodyn., 29 (2004), pp. 279–299 [35] L. Martínez, J.M. Rodríguez Maroto, On transport resistances in direct contact membrane distillation, J. Membr. Sci., 295 (2007), pp. 28–39 [36] S. Al-Obaidani, E. Curcio, F. Macedonio, G.D. Profio, H. Al-Hinai, E. Drioli, Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation, J. Membr. Sci., 323 (2008), pp. 85–98 [37] M. Khayet, M.P. Godino, J.I. Mengual, Modelling transport mechanism through a porous partition, J. Non-Equilb. Thermodyn., 26 (2001), pp. 1–14 [38] M. Su, M.M. Teoh, K.Y. Wang, J. Su, T.S. Chung, Effect of inner-layer thermal conductivity on flux enhancement of dual-layer hollow fiber membranes in direct contact membrane distillation, J. Membr. Sci., 364 (2010), pp. 278–289 [39] F. Laganà, G. Barbieri, E. Drioli, Direct contact membrane distillation: modelling and concentration experiments, J. Membr. Sci., 166 (2000), pp. 1–11 [40] L. Martínez, F.J. Florido Díaz, A. Hernández, P. Prádanos, Characterization of three hydrophobic porous membranes used in membrane distillation: modelling and evaluation of their water vapor permeabilities, J. Membr. Sci., 203 (2002), pp. 15–27 [41] L. Martínez, F.J. Florido Díaz, A. Hernández, P. Prádanos, Estimation of vapor transfer coefficient of hydrophobic porous membranes for applications in membrane distillation, Sep. Purif. Technol., 33 (2003), pp. 45–55 [42] J. Woods, J. Pellegrino, J. Burch, Generalized guidance for considering pore-size distribution in membrane distillation, J. Membr. Sci., 368 (2011), pp. 124–133 [43] M. Khayet, A.O. Imdakm, T. Matsuura, Monte Carlo simulation and experimental heat and mass transfer in direct contact membrane distillation, Int. J. Heat Mass Transfer, 53 (2010), pp. 1249–1259 [44] A.O. Imdakm, T. Matsuura, A Monte Carlo simulation model for membrane distillation processes: direct contact (MD), J. Membr. Sci., 237 (2004), pp. 51–59 [45] A.O. Imdakm, T. Matsuura, Simulation of heat and mass transfer in direct contact membrane distillation (MD): the effect of membrane physical properties, J. Membr. Sci., 262 (2005), pp. 117–128 [46] A.O. Imdakm, M. Khayet, T. Matsuura, A Monte Carlo simulation model for vacuum membrane distillation process, J. Membr. Sci., 306 (2007), pp. 341–348 [47] M. Essalhi, M. Khayet, Surface segregation of fluorinated modifying macromolecule for hydrophobic/hydrophilic membrane preparation and application in air gap and direct contact membrane distillation, J. Membr. Sci., 417–418 (2012), pp. 163–173 [48] W.G. Pollard, R.D. Present, On gaseous self-diffusion in long capillary tubes, Phys. Rev., 73 (1948), pp. 762–774 [49] E.A. Mason, A.P. Malinauskas, Gas Transport in Porous Media: The Dusty Gas Model, Elsevier, Amsterdam (1983) [50] R.S. Barhate, C.K. Loong, S. Ramakrishna, Preparation and characterization of nanofibrous filtering media, J. Membr. Sci., 283 (2006), pp. 209–218 [51] D. Singh, K.K. Sirkar, Desalination of brine and produced water by direct contact membrane distillation at high temperatures and pressures, J. Membr. Sci., 389 (2012), pp. 380–388 [52] J. Phattaranawik, R. Jiraratananon, A.G. Fane, Heat transport and membrane distillation coefficients in direct contact membrane distillation, J. Membr. Sci., 212 (2003), pp. 177–193 [53] M. Gryta, M. Tomaszewska, Heat transport in the membrane distillation process, J. Membr. Sci., 144 (1998), pp. 211–222 [54] H. Lee, F. He, L. Song, J. Gilron, K.K. Sirkar, Desalination with a cascade of crossflow hollow fiber membrane distillation devices integrated with a hollow fiber heat exchanger, AIChE J., 57 (7) (2011), pp. 1780–1795 [55] M. Khayet, J.I. Mengual, T. Matsuura, Porous hydrophobic/hydrophilic composite membranes: application in desalination using direct contact membrane distillation, J. Membr. Sci., 252 (2005), pp. 101–113 [56] M. Khayet, M.P. Godino, J.I. Mengual, Study of asymmetric polarization in direct contact membrane distillation, Sep. Sci. Technol., 39 (2004), pp. 125–147
Collections