Publication:
Treatment of olive mill wastewater by membrane distillation using polytetrafluoroethylene membranes

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-09-19
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science BV
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Direct contact membrane distillation (DCMD) process was applied for olive mill wastewater (OMW) treatment. Three commercial polytetrafluoroethylene (PTFE) membranes with different pore sizes (TF200 of 0.2 mu m, TF450 of 0.45 mu m and TF1000 of 1 mu m) were tested under different temperatures, namely, temperature difference and mean temperature. The aim of this study is to investigate the possibility of pure water production and concentration of natural polyphenols from OMW for further valorization. The results demonstrated the efficiency of DCMD process for OMW treatment by the three PTFE membranes. The permeate flux increased with the increase of the membrane pore size, the mean temperature and the temperature difference. However, no significant effect was detected between the pore size and the polyphenol separation coefficient, which remains close to 100% after 8 h of DCMD operating time. The DCMD processing of OMW using PTFE membranes allow to reach a concentration factor higher than 1.78 after 8 h of operating time, obtaining the best performance index for the membrane TF1000 with the greatest pore size. In addition, the effect of high temperatures on the phenolic content of OMW and its free radical-scavenging ability (DPPH assay) was also evaluated with time. It was found that a treatment of OMW by DCMD at high temperatures have no undesirable effects on the phenolic content and its antioxidant activity.
Description
© 2012 Elsevier B.V. The authors gratefully acknowledge the financial support of AECID (Agencia Española de Cooperación Internacional y Desarrollo, Ministerio de Asuntos Exteriores) through the projects A/016076/08, A/023127/09 and A/032278/10.
UCM subjects
Unesco subjects
Keywords
Citation
[1] S.P. Tsonis, V.P. Tsola, S.G. Grigoropoulos, Systematic characterization and chemical treatment of olive oil mill wastewater, Toxicol. Environ. Chem. 20 (1989) 437–457. [2] E. Tsagaraki, H.N. Lazarides, K.B. Petrotos, Olive mill wastewater, in: V. Oreopoulou, W. Russ (Eds.), Utilisation of By-products and Treatment of Waste in the Food Industry, Springer, 2007, pp. 133-157. [3] F. Cabrera, R. López, A. Martínez Borditi, E. Dupuy de Lomeb, J.M. Murillo, Land treatment of olive oil mill wastewater, Int. Biodeterior. Biodegrad. (1996) 215–225. [4] J.A. Fiestas Ros de Ursinos, Differentes utilisations des margines, in: Proc. Of Seminaire International sur la valorisation des sous produits de l’ olivier, FAOUNAP, Monastir, Tunisie, 1981, pp. 93–110. [5] A. Jaouani, S. Sayadi, M. Vanthournhout, M. Penninckx, Potent fungi for decolourisation of olive oil mill wastewaters, Enzyme Microb. Technol. 33 (2003) 802–809. [6] R. Borja, B. Rincón, F. Raposo, J. Alba, A. Martín, Kinetics of mesophilic anaerobic digestion of the two-phase olive mill solid waste, Biochem. Eng. J. 15 (2) (2003) 139–145. [7] L. Bertin, S. Berselli, F. Fava, M. Petrangeli-Papini, L. Marchetti, Anaerobic digestion of olive mill wastewaters in biofilm reactors packed with granular activated carbon and “Manville” silica beads, Water Res. 38 (2004) 3167–3178. [8] U. Tomati, E. Galli, L. Pasetti, E. Volterra, Bioremediation of olive mill wastewaters by composting, Waste Manage. Res. 13 (1995) 509–518. [9] N. Azbar, A. Bayram, A. Filibeli, A. Muezzinoglu, F. Sengul, A. Ozer, A review of waste management options in olive oil production, Crit. Rev. Environ. Sci. Technol. 34 (2004) 209–247. [10] R. Jarboui, M. Chtourou, C. Azri, N. Gharsallah, E. Ammar, Time-dependent evolution of olive mill wastewater sludge organic and inorganic components and resident microbiota in multi-pond evaporation system, Biores. Technol. 101 (2010) 5749–5758. [11] M. Achak, A. Hafidi, N. Ouazzani, S. Sayadi, L. Mandi, Low cost biosorbent “banana peel” for the removal of phenolic compounds from olive mill wastewater: kinetic and equilibrium studies, J. Hazard. Mater. 166 (2009) 117–125. [12] W.K. Lafi, B. Shannak, M. Al-Shannag, Z. Al-Anber, M. Al-Hasan, Treatment of olive mill wastewater by combined advanced oxidation and biodegradation, Sep. Purif. Technol. (2009) 141–146. [13] P. Cañizares, J. Lobato, R. Paz, M.A. Rodrigo, C. Sáez, Advanced oxidation processes for the treatment of olive-oil mills wastewater, Chemosphere 67 (2007) 832–838. [14] A. Giannis, M. Kalaitzakis, E. Diamadopoulos, Electrochemical treatment of olive mill wastewater, J. Chem. Technol. Biotechnol. 82 (2007) 663–671. [15] U. Tezcan Un, S. Ugur, A.S. Koparal, U. Bakır Ogutveren, Electrocoagulation of olive mill wastewaters, Sep. Purif. Technol. 52 (2006) 136–141. [16] C.M. Galanakis, E. Tornberg, V. Gekas, Clarification of high-added value products from olive mill wastewater, J. Food Eng. 99 (2010) 190–197. [17] C.M. Galanakis, E. Tornberg, V. Gekas, A study of the recovery of the dietary fibres from olive mill wastewater and the gelling ability of the soluble fiber fraction, LWT-Food Sci. Technol. 43 (2010) 1009–1017. [18] A. El-Abbassi, A. Hafidi, M.C. García Payo, M. Khayet, Concentration of olive mill wastewater by membrane distillation for polyphenols recovery, Desalination 246 (2009) 297–301. [19] A. El-Abbassi, M. Khayet, A. Hafidi, Micellar enhanced ultrafiltration process for the treatment of olive mill wastewater, Water Res. 45 (2011) 4522–4530. [20] C.A. Paraskeva, V.G. Papadakis, E. Tsarouchi, D.G. Kanellopoulou, P.G. Koutsoukos, Membrane processing for olive mill wastewater fractionation, Desalination 213 (2007) 218–229. [21] C. Russo, A new membrane process for the selective fractionation and total recovery of polyphenols, water and organic substances from vegetation waters (VW), J. Membrane Sci. 288 (2007) 239–246. [22] E. García Castelló, A. Cassano, A. Criscuoli, C. Conidi, E. Drioli, Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system, Water Res. 44 (2010) 3883–3892. [23] T. Coskun, E. Debik, N.M. Demir, Treatment of olive mill wastewaters by nanofiltration and reverse osmosis membranes, Desalination 259 (2010) 65–70. [24] O. Yahiaoui, H. Lounici, N. Abdi, N. Drouiche, N. Ghaffour, A. Pauss, N. Mameri, Treatment of olive mill wastewater by the combination of ultrafiltration and bipolar electrochemical reactor processes, Chem. Eng. Process. 50 (2011) 37–41. [25] O. Folin, V. Ciocalteau, On tyrosine and tryptophan determination in protein, J. Biol. Chem. 73 (1927) 627–650. [26] G. Guelachvili, M. Birk, Ch.J. Borde, J.W. Brault, L.R. Brown, B. Carli, A.R.H. Cole, K.M. Evenson, A. Fayt, D. Hausamann, J.W.C. Johns, J. Kauppinen, Q. Kou, A.G. Maki, K. Narahari Rao, R.A. Toth, W. Urban, A. Valentin, J. Verges, G. Wagner, M.H. Wappelhorst, J.S. Wells, B.P. Winnewisser, M. Winnewisser, High resolution wave number standards for the infrared (Technical Report), IUPAC, Pure Appl. Chem. 68 (1996) 149–219. [27] A. Von-Gadow, E. Joubert, C.F. Hansmann, Comparison of the antioxidant activity of rooibos tea with green, oolong and black tea, Food Chem. 60 (1997) 73–77. [28] M. Khayet, T. Matsuura, Membrane Distillation: Principles and Applications, Elsevier, Amsterdam, 2011. [29] M. Khayet, A. Velázquez, J.I. Mengual, Direct contact membrane distillation of humic acid solutions, J. Membrane Sci. 240 (2004) 123–128. [30] M. Khayet, A. Velázquez, J.I. Mengual, Modelling mass transport through a porous partition: effect of pore size distribution, J. Non-Equilib. Thermodyn. 29 (2004) 279–299. [31] M. Khayet, Membranes and theoretical modeling of membrane distillation: A review, Adv. Colloid Interface Sci. 164 (2011) 56–88. [32] F. Visioli, A. Romani, N. Mulinacci, S. Zarini, D. Conte, F.F. Vincieri, C. Galli, Antioxidant and other biological activities of olive mill waste waters, J. Agric. Food Chem. 47 (1999) 3397–3401. [33] N. Allouche, I. Fki, S. Sayadi, Toward a high yield recovery of antioxidants and purified hydroxytyrosol from olive mill wastewaters, J. Agric. Food Chem. 52 (2004) 267–273. [34] C. Manna, V. Migliardi, F. Sannino, A. De Martino, R. Capasso, Protective effects of synthetic hydroxytyrosol acetyl derivatives against oxidative stress in human cells, J. Agric. Food Chem. 53 (2005) 9602–9607. [35] S. Schaffer, M. Podstawa, F. Visioli, P. Bogani, W.E. Muller, G.P. Eckert, Hydroxytyrosol-rich olive mill wastewater extract protects brain cells in vitro and ex vivo, J. Agric. Food Chem. 55 (2007) 5043–5049. [36] H.K. Obied, D.R. Bedgood Jr., P.D. Prenzler, K. Robards, Bioscreening of Australian olive mill waste extracts: biophenol content, antioxidant, antimicrobial and molluscicidal activities, Food Chem. Toxicol. 45 (2007) 1238–1248. [37] A. Leonardis, V. Macciola, A. Nag, Antioxidant activity of various phenol extracts of olive-oil mill wastewaters, Acta Aliment. 38 (2009) 77–86. [38] G. Rodríguez, A. Lama, M. Trujillo, J.L. Espartero, J. Fernández Bolanos, Isolation of a powerful antioxidant from Olea europaea fruit-mill waste: 3,4- dihydroxyphenylglycol, Food Sci. Technol. 42 (2009) 483–490. [39] C.M. Galanakis, E. Tornberg, V. Gekas, The effect of heat processing on the functional properties of pectin contained in olive mill wastewater, LWT-Food Sci. Technol. 43 (2010) 1001–1008.
Collections