Publication:
Oxygen to silicon ratio determination of SiOXHY thin films

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2005-12-01
Authors
Mártil de la Plaza, Ignacio
Prado Millán, Álvaro del
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science SA
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The oxygen to silicon ratio of several SiOxHy thin films deposited by the electron cyclotron resonance plasma method was studied by several methods (heavy ion elastic recoil detection analysis, energy dispersive X-ray spectroscopy, Auger spectroscopy and infrared spectroscopy). Among these methods, other groups found that x scales linearly with the wavenumber of the Si-O-Si stretching vibration (nu(st)) by the relation x = 0.020 nu(st) - 19.3. This equation has been used by many different groups to determine x of SiOx thin films, but we have found that in our ECR deposited films the above mentioned formula gives accurate results for x values higher than 1.5, but for Si richer films the formula overestimates the x value, with values well outside the 20% accuracy range. A possible explanation of this discrepancy may be the bonded hydrogen of the films: in the plasma deposited samples used in this study the hydrogen content was high, above 20 at.% for silicon-rich samples. As a consequence, the Si-O-Si groups were immersed in a more electronegative matrix than in the usual case (SiOx with a low hydrogen concentration) and thus the variation of the position of the stretching peak was less pronounced.
Description
© 2005 Elsevier B.V. All rights reserved. The authors acknowledge C.A.I. de Implantación Iónica (U.C.M.) for technical support, and C.A.I. de Espectroscopía (U.C.M.) for availability of the FTIR spectrometer. This work was partially supported by the Spanish CICYT, under the contract TEC 2004-01237.
Unesco subjects
Keywords
Citation
[1] F. Irrera, L. Marangelo, IEEE Trans. Electron Devices 47 (2000) 372. [2] D. Nesheva, C. Raptis, A. Perakis, I. Bineva, Z. Aneva, Z. Levi, S. Alexandrova, H. Hofmeister, J. Appl. Phys. 82 (2002) 4678. [3] G. Franzò, A. Irrera, E.C. Moreira, M. Miritello, F. Iacoma, D. Sanfilippo, G. Di Stefano, P.G. Fallica, F. Priolo, Appl. Phys., A 74 (2002) 1. [4] L. Khriachtchev, S. Novikov, J. Lahtinen, J. App. Phys. 92 (2002) 5856. [5] L.X. Yi, J. Heitmann, R. Scholz, M. Zacharias, Appl. Phys. Lett. 81 (2002) 4248. [6] E. San Andrés, Á. del Prado, I. Mártil, G. González-Díaz, D. Bravo, F.J. López, J. Appl. Phys. 92 (2002) 1906. [7] D.V. Tsu, G. Lucovsky, B.N. Davidson, Phys. Rev., B 40 (1989) 1795. [8] B.J. Hinds, F. Wang, D.M. Wolfe, C.L. Hinkle, G. Lucovsky, J. Vac. Sci. Technol., B 16 (1998) 2171. [9] F. Rochet, G. Dufour, H. Roulet, B. Pelloie, J. Perrie`re, E. Fogarassy, A. Slaoui, M. Froment, Phys. Rev., B 37 (1988) 6468. [10] D. Nesheva, I. Bineva, Z. Levi, Z. Aneva, Tx. Merdzhanova, J.C. Pivin, Vacuum 68 (2003) 1. [11] M. Zacharias, D. Dimova-Malinovska, M. Stutzmann, Phil. Mag., B 73 (1996) 799. [12] B.J. Hinds, F. Wang, D.M. Wolfe, C.L. Hinkle, G. Lucovsky, J. Non-Cryst. Solids 227 (1998) 507. [13] E. San Andrés, Á. Del Prado, I. Mártil, G. González-Díaz, F.L. Martí0nez, J. Vac. Sci. Technol., B 21 (2003) 1306. [14] F.L. Martínez, Á. Del Prado, I. Mártil, G. González-Díaz, W. Bohne, W. Fuhs, J. Rörich, B. Selle, I. Sieber, Phys. Rev., B 63 (2001) 245320. [15] P.V. Bulkin, P.L. Swart, B.M. Lacquet, J. Non Crys. Solids 226 (1998) 58. [16] W. Bohne, J. Röhrich, G. Röschert, Nucl. Instrum. Methods Phys. Res., B Beam Interact. Mater. Atoms 136–138 (1998) 633. [17] G.F. Bastin, H.J.M. Heijligers, Scanning 12 (1990) 225.
Collections