Publication:
Cosmological magnetic fields from inflation in extended electromagnetism

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2011-01-19
Authors
Beltrán Jiménez, José
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In this work we consider an extended electromagnetic theory in which the scalar state which is usually eliminated by means of the Lorenz condition is allowed to propagate. This state has been shown to generate a small cosmological constant in the context of standard inflationary cosmology. Here we show that the usual Lorenz gauge-breaking term now plays the role of an effective electromagnetic current. Such a current is generated during inflation from quantum fluctuations and gives rise to a stochastic effective charge density distribution. Because of the high electric conductivity of the cosmic plasma after inflation, the electric charge density generates currents which give rise to both vorticity and magnetic fields on sub-Hubble scales. Present upper limits on vorticity coming from temperature anisotropies of the CMB are translated into lower limits on the present value of cosmic magnetic fields. We find that, for a nearly scale invariant vorticity spectrum, magnetic fields B-lambda > 10(-12) G are typically generated with coherence lengths ranging from subgalactic scales up to the present Hubble radius. Those fields could act as seeds for a galactic dynamo or even account for observations just by collapse and differential rotation of the protogalactic cloud.
Description
© 2011 American Physical Society. We thank Ruth Durrer and Misao Sasaki for useful comments. This work has been supported by MICINN (Spain) Projects No. FIS 2008-01323 and No. FPA 2008- 00592, CAM/UCM 910309, MEC Grant No. BES-2006- 12059, and MICINN Consolider-Ingenio MULTIDARK CSD2009-00064. J. B. also received support from the Norwegian Research Council under the YGGDRASIL Project No. 195761/V11 and wishes to thank the hospitality of the University of Geneva where part of this work was performed
Unesco subjects
Keywords
Citation
[1] L. M. Widrow, Rev. Mod. Phys. 74, 775 (2002); R.M. Kulsrud and E. G. Zweibel, Rep. Prog. Phys. 71, 046901 (2008); P. P. Kronberg, Rep. Prog. Phys. 57, 325 (1994). [2] A. Neronov and I. Vovk, Science 328, 73 (2010); F. Tavecchio et al., arXiv:1004.1329; S. ’i. Ando and A. Kusenko, Astrophys. J. 722, L39 (2010); A. Neronov et al., arXiv:1006.0164. [3] A. Brandenburg and K. Subramanian, Phys. Rep. 417, 1 (2005). [4] M. L. Bernet, F. Miniati, S. J. Lilly, P. P. Kronberg, and M. Dessauges-Zavadsky, Nature (London) 454, 302 (2008); A. M.Wolfe, R. A. Jorgenson, T. Robishaw, C. Heiles, and J. X. Prochaska, Nature (London) 455, 638 (2008). [5] E. R. Harrison, Mon. Not. R. Astron. Soc. 147, 279 (1970); Phys. Rev. Lett. 30, 188 (1973). [6] M. S. Turner and L. M. Widrow, Phys. Rev. D 37, 2743 (1988); B. Ratra, Astrophys. J. 391, L1 (1992); K. Bamba and J. Yokoyama, Phys. Rev. D 69, 043507 (2004); K. Bamba and M. Sasaki, J. Cosmol. Astropart. Phys. 02 (2007) 030. [7] J. M. Quashnock, A. Loeb, and D. N. Spergel, Astrophys. J. 344, L49 (1989); T. Vachaspati, Phys. Lett. B 265, 258 (1991). [8] O. Bertolami and D. F. Mota, Phys. Lett. B 455, 96 (1999); A. L. Maroto, Phys. Rev. D 64, 083006 (2001); K. Ichiki et al., Science 311, 827 (2006). [9] J. Beltrán Jiménez and A. L. Maroto, J. Cosmol. Astropart. Phys. 03 (2009) 016; Int. J. Mod. Phys. D 18, 2243 (2009). [10] J. Beltrán Jiménez and A. L. Maroto, Phys. Lett. B 686, 175 (2010). [11] J. B. Jimenez, T. S. Koivisto, A. L. Maroto, and D. F. Mota, J. Cosmol. Astropart. Phys. 10 (2009) 029. [12] C. Itzykson and J. B. Zuber, Quantum Field Theory (McGraw-Hill, New York, 1980); N. N. Bogoliubov and D.V. Shirkov, Introduction to the Theory of Quantized Fields (InterScience, New York, 1959). [13] A. Dolgov and J. Silk, Phys. Rev. D 47, 3144 (1993). [14] C. Caprini and P. G. Ferreira, J. Cosmol. Astropart. Phys. 02 (2005) 006. [15] Y. Urakawa and T. Tanaka, Prog. Theor. Phys. 122, 779 (2009). [16] R. Durrer, The Cosmic Microwave Background (Cambridge University Press, Cambridge, England, 2008). [17] C. Caprini and R. Durrer, Phys. Rev. D 65, 023517 (2001); C. Caprini, R. Durrer, and E. Fenu, J. Cosmol. Astropart. Phys. 11 (2009) 001; T. Kahniashvili et al., Phys. Rev. D 82, 083005 (2010); T. Kahniashvili, A. G. Tevzadze, and B. Ratra, Astrophys. J. 726, 78 (2011). [18] R. Durrer, P.G. Ferreira, and T. Kahniashvili, Phys. Rev. D 61, 043001 (2000). [19] K. Subramanian and J. D. Barrow, Phys. Rev. D 58, 083502 (1998).
Collections