Publication:
Development of antifouling properties and performance of nanofiltration membranes modified by interfacial polymerisation

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2011-06-01
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science Bv
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Two types of bisphenol monomers, Bisphenol A (BPA) and Tetramethyl Bisphenol A (TMBPA), with different concentrations of bisphenol aqueous solution (0.5% to 2.%w/v) and various interfacial polymerisation times (10 s, 30 s and 60 s) in the fixed 0.15%w/v organic solution of trimesoyl chloride (TMC)-hexane were studied. Irreversible fouling of both unmodified polyethersulfone NFPES10 and modified polyester thin-film composite polyethersulfone membranes were studied using humic acid model solutions at two different pH values, pH 7 and pH 3. It was observed that polyester thin-film composite membranes prepared by BPA exhibited fewer tendencies for irreversible fouling by humic acid molecules at neutral environment compared to unmodified NFPES10 and TMBPA-polyester series. This is most probably due to high electrostatic repulsion force between negatively charged of BPA-polyester layer and highly negative charged of humic acid at pH7. However, some modified membranes with rougher surfaces were severely fouled by humic acid molecules at acidic environment, pH 3. Under this acidic environment, carboxylic acid groups of humic acid lost their charge and the macromolecules of humic acid have smaller macromolecular configuration due to the increased hydrophobicity and reduced inter-chain electrostatic repulsion. Thus the molecules of humic acid may be preferentially accumulated at the valleys of the rougher membrane surface blocking them and resulting in a more severe fouling. In addition, the modification also affected membrane pore size and pore size distribution as shown by AFM images. It was also observed that the smaller pore size generated after modification does not have significant effect on humic acid removal due to the larger size of humic acid molecules. All the modified membranes posses smaller pore size than the unmodified NFPES10 (1.47 nm) in the range of 0.8-1.34 nm.
Description
© 2010 Elsevier B.V. We would like to thank the Ministry of Higher Education, Malaysia for providing Mazrul Abu Seman with a scholarship to carry out this work.
UCM subjects
Keywords
Citation
[1] A.L. Ahmad, B.S. Ooi, A. Wahab Mohammad, J.P. Choudhury, Development of a highly hydrophilic nanofiltration membrane for desalination and water treatment, Desalination 168 (2004) 215–221. [2] H.S. Lee, S.J. Im, J.H. Kim, H.J. Kim, J.P. Kim, B.R. Min, Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles, Desalination 219 (2008) 48–56. [3] Y. Zhou, S. Yu, M. Liu, H. Chen, C. Gao, Effect of mixed crosslinking agents on performance of thin-film-composite membranes, Desalination 192 (2006) 182–189. [4] A.L. Ahmad, B.S. Ooi, J.P. Choudhury, Preparation and characterization of copolyamide thin film composite membrane from piperazine and 3, 5-diaminobenzoic acid, Desalination 158 (2003) 101–108. [5] S. Veríssimo, K.-V. Peinemann, J. Bardado, New composite hollow fiber membrane for nanofiltration, Desalination 184 (2005) 1–11. [6] L.Y. Chu, S. Wang, W.M. Chen, Surface modification of ceramic-supported polyethersulfone membranes by interfacial polymerization for reduced membrane fouling, Macromol. Chem. Phys. 207 (2005) 1934–1940. [7] G. Kang, M. Liu, B. Lin, Y. Cao, Q.A. Yuan, Novel method of surface modification on thin film composite reverse osmosis membrane by grafting poly(ethylene glycol), Polymer 48 (2007) 1165–1170. [8] S.Y. Kwak, M.O. Yeom, I.J. Roh, D.Y. Kim, J.J. Kim, Correlations of chemical structure, atomic force microscopy (AFM) morphology and reverse osmosis (RO) characteristics in aromatic polyester high-flux RO membranes, J. Membr. Sci. 132 (1997) 183–191. [9] A.W. Mohammad, N. Hilal, M.N. Abu Seman, A study on producing composite nanofiltration membranes with optimized properties, Desalination 158 (2003) 73–78. [10] B. Tang, Z. Huo, P. Wu, Study on a novel polyester composite nanofiltration membrane by interfacial polymerization of triethanolamine (TEOA) and trimesoyl chloride (TMC) I. Preparation, characterization and nanofiltration properties test of membrane, J. Membr. Sci. 320 (2008) 198–205. [11] U. Razdan, S.S. Kulkarni, Nanofiltration thin-film-composite polyesteramide membranes based on bulky diols, Desalination 161 (2004) 25–32. [12] M.M. Jayarani, S.S. Kulkarni, Thin-film composite poly(esteramide)-based membranes, Desalination 130 (2000) 17–30. [13] N. Hilal, W.R. Bowen, L. Alkhatib, O. Ogunbiyi, A review of atomic microscopy applied to cell interactions with membrane, Trans. IChemE A Chem. Eng. Res. Des. 84 (A4) (2006) 282–292. [14] W.R. Bowen, N. Hilal, R.W. Lovitt, C.J. Wright, Characterisation of membrane surfaces: direct measurement of biological adhesion using an atomic force microscope, J. Membr. Sci. 154 (1999) 205–212. [15] M. Mänttäri, L. Puro, J. Nuortila-Jokinen, M. Nyström, Fouling effects of polysaccharides and humic acid in nanofiltration, J. Membr. Sci. 165 (2000) 1–17. [16] M. Mänttäri, M. Nystrom, Critical flux in NF of high molar mass polysaccharides and effluents from the paper industry, J. Membr. Sci. 170 (2000) 257–273. [17] C.T. Cleveland, T.F. Seacord, A.K. Zander, Standardized membrane pore size characterization by polyethylene glycol rejection, J. Environ. Eng. 128 (2002) 399–407. [18] T.A. Tweddle, A. Baxter, O. Kutowy, ‘Equipment and procedures for testing small coupon samples of RO and UF membranes, Special National Research Council of Canada Rep. No. C-1144-875, Wikimedia Foundation, Inc., Ottawa, 1987. [19] S. Singh, K.C. Khulbe, T. Matsuura, P. Ramamurthy, Membrane characterization by solute transport and atomic force microscopy, J. Membr. Sci. 142 (1998) 117–127. [20] M. Khayet, T. Matsuura, Determination of surface and bulk pore sizes of flat-sheet and hollow-fiber membranes by atomic force microscopy, gas permeation and solute transport methods, Desalination 158 (2003) 57–64. [21] M. Khayet, C.Y. Feng, K.C. Khulbe, T. Matsuura, Preparation & characterization of polyvinylidene fluoride hollow fiber membranes for ultrafiltration, Polymer 43 (2002) 3879–3890. [22] M. Ishiguro, T. Matsuura, C.A. Detellier, Study on the solute separation and the pore size distribution of a montmorillonite, Membr. Sep. Sci. Technol. 31 (1996) 545–556. [23] A.S. Michaels, Analysis and prediction of sieving curves for ultrafiltration membranes: a universal correlation? Sep. Sci. Technol. 15 (6) (1980) 1305–1322. [24] A.R. Cooper, D.S. Van Derveer, Characterization of ultrafiltration membranes by polymer transport measurements, Sep. Sci. Tech. 14 (1979) 551–556. [25] W.R. Bowen, A.W. Mohammad, Characterization and prediction of nanofiltration membrane performance – a general assessment, IChemE 76 (1998) 885–893 Part A. [26] M.N. Abu Seman, M. Khayet, N. Hilal, Nanofiltration thin-film composite polyester polyethersulfone-based membranes prepared by interfacial polymerization, J. Membr. Sci. 348 (2010) 109–116. [27] J. Ji, M. Mehta, Mathematical model for the formation of thin-film composite hollow fiber and tubular membranes by interfacial polymerization, J. Membr. Sci. 192 (2001) 41–54. [28] S. Veríssimo, K.V. Peinemann, J. Bordado, Influence of the diamine structure on the nanofiltration performance, surface morphology and surface charge of the composite polyamide membranes, J. Membr. Sci. 279 (2006) 266–275. [29] http://en.wikipedia.org/wiki/Methyl_group. [30] F.A. Ruiz Trevino, D.R. Paul, Modification of polysulfone gas separation membranes by additives, J. Appl. Polym. Sci. 66 (1997) 1925–1941. [31] J.Y. Jho, Cooperative Molecular motion on Bisphenol-A Polycarbonate (Molecular Motion). (1990) PhD Thesis. The University of Michigan. [32] S. Kim, J. Liu, Molecular modelling of bisphenol-a polycarbonate and tetramethyl bisphenol-a polycarbonate, Korea Polym. J. 9 (2001) 129–142. [33] M.L. Chng, Y. Xiao, T.S. Chung, M. Toriida, S. Tamai, The effects of chemical structure on gas transport properties of poly(aryl ether ketone) randomcopolymers, Polymer 48 (2007) 311–317. [34] S. Hong, M. Elimelech, Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes, J. Membr. Sci. 132 (1997) 159–181. [35] M. Khayet, T. Matsuura, Surface modification of membranes for the separation of volatile organic compounds from water by pervaporation, Desalination 148 (2002) 31–37. [36] M. Khayet, A. Velázquez, J.I. Mengual, Direct contact membrane distillation of humic acid solutions, J. Membr. Sci. 240 (2004) 123–128. [37] C.Y. Tang, Q.S. Fu, C.S. Criddle, J.O. Leckie, Effect of flux transmembrane pressure and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containingwastewater, Environ. Sci. Technol. 41 (2007) 2008–2014. [38] S. Kang, E.M.V. Hoek, H. Choi, H. Shin Effect, Membrane surface properties during the fast evaluation of cell attachment, Sep. Sci. Tech. 41 (2006) 1475–1487. [39] E.M.V. Hoek, S. Bhattacharjee, M. Elimelech, Effect of membrane surface roughness on colloid-membrane DLVO interactions, Langmuir 19 (2003) 4836–4847. [40] W.R. Bowen, T.A. Doneva, H.-B. Yin, Separation of humic acid from a model surface waterwith PSU/SPEEK blend UF/NFmembranes, J.Membr. Sci. 206 (2002) 417–429. [41] M. Khayet, Membrane surface modification and characterization by X-ray photoelectron spectroscopy, atomic force microscopy and contact angle measurements, Appl. Surf. Sci. 238 (1–4) (2004) 269–272. [42] N. Hilal, L. Al-Khatib, H. Al-Zoubi, R. Nigmatullin Atomic, Force microscopy study of membranes modified by surface grafting of cationic polyelectrolyte, Desalination 184 (2005) 45–55. [43] J.E. Kilduff, S. Mattaraj, M. Zhou, G. Belfort, Kinetics of membrane flux decline: the role of natural colloids and mitigation via membrane surface modification, J. Nanopart. Res. 7 (2005) 525–544. [44] A.I. Schäfer, A.G. Fane, T.D.Waite Nanofiltration, of natural organicmatter: removal, fouling and influence of multivalent ions, Desalination 118 (1998) 109–122. [45] Y.P. Chin, G. Aiken, E. O'Loughlin, Molecular weight, polydispersity and spectroscopic properties of aquatic humic substances, Environ. Sci. Technol. 28 (1994) 1853–1858. [46] H.-H. Lee, Y.-H. Weng, K.C. Li, Electro-ultrafiltration study on Aldrich humic substances with different molecular weights, Sep. Pur. Tech. 63 (2008) 23–29. [47] S. Nakao, Determination of pore size and pore size distribution: 3. Filtration membranes, J. Membr. Sci. 96 (1994) 131–165. [48] K.Y. Wang, T.S. Chung, The characterization of flat composite nanofiltration membranes and their applications in the separation of Cephalexin, J. Membr. Sci. 247 (2005) 37–50. [49] W.R. Bowen, H.Mukhtar, Characterisation and prediction of separation performance of nanofiltration membranes, J. Membr. Sci. 112 (1996) 263–274. [50] M. Ernst, A. Bismarck, J. Springer, M. Jekel, Zeta-potential and rejection rates of a polyethersulfone nanofiltration membrane in single salt solutions, J. Membr. Sci. 165 (2000) 251–259. [51] W.R. Bowen, A.W. Mohammad, N. Hilal, Characterisation of nanofiltration membrane for predictive purposes – use of salts, uncharged solutes and atomic force microscopy, J. Membr. Sci. 126 (1997) 91–105. [52] N.A. Ochoa, P. Pradanos, L. Palacia, C. Pagliero, J. Marchese, A. Hernández, Pore size distributions based on AFMimaging and retention ofmultidisperse polymer solutes: charactersation of polyethersulfone UFmembranes with dopes containing different PVP, J. Membr. Sci. 187 (2001) 227–237. [53] N. Ali, N.S. Suhaimi, Performance evaluation of locally fabricated asymmetric nanofiltration membrane for batik industry effluent, World Appl. Sci. J. 5 (2009) 46–52 (Special Issue for Environment). [54] A.R. Hassan, A.F. Ismail, Characterization of nanofiltration membranes by the solute transport method: Some practical aspects in determining of mean pore size and pore size distributions. Regional Symposium on Membrane Science and Technology 2004, 21–25 April 2004, Puteri Pan Pacific Hotel, Johor Baru, Johor, Malaysia. (2004). [55] H. Al Zoubi, Development of novel approach to the prediction of nanofiltration membrane performance using advanced atomic forcemicroscopy, Ph.D Dissertation, University of Nottingham, UK, 2006.
Collections