Publication:
Cathodoluminescence study of the radiative recombination properties of Se-doped GaSb crystals

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2005-01-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The radiative recombination properties of Se-doped GaSb crystals grown by the Bridgman method have been investigated by cathodoluminescence (CL) microscopy and spectroscopy in the scanning electron microscope. A CL band centered at about 765 meV, not previously observed in undoped GaSb, is generally the dominant emission. CL spectra recorded under different excitation conditions suggest that this band can be attributed to a Se-related level-to-band transition. The spatial distribution of the 765 meV emission, as observed in the CL images, indicates an inhomogeneous Se distribution in the material.
Description
© 2005 American Institute of Physics. This work has been carried out in the frame of the Fifth Framework European Programme for research, HPRN-CT 2001-00199 project. Support from MCYT through Project Nos. MAT2003-00455 and MAT2003-09873-C02-01 is also acknowledged..
Unesco subjects
Keywords
Citation
1. P. S. Dutta, H. L. Bhat, and V. Kumar, J. Appl. Phys. 81, 5821 (1997). 2. H. Mohseni, E. Michel, J. Sandoen, M. Razeghi, W. Mitchel, and G. Brown, Appl. Phys. Lett. 71, 1403 (1997). 3. M. G. Mauk and V. M. Andreev, Semicond. Sci. Technol. 18, S191 (2003). 4. R. D. Baxter, R. T. Bate, and F. J. Reid, J. Phys. Chem. Solids 26, 41 (1965). 5. M. Ichimura, K. Higuchi, Y. Hattori, T. Wada, and N. Kitamura, J. Appl. Phys. 68, 6153 (1990). 6. B. B. Kosicki, A. Jayraman, and W. Paul, Phys. Rev. B 172, 764 (1968). 7. P. Hubík, J. J. Marešs, J. Krištofik, V. Sestáková, and B. Stfpánek, Semicond. Sci. Technol. 11, 989 (1996). 8. J. K. Liakos and P. T. Landsberg, Semicond. Sci. Technol. 11, 1895 (1996). 9. G. W. Charache et al., J. Appl. Phys. 85, 2247 (1999). 10. P. S. Dutta, B. Méndez, J. Piqueras, E. Diéguez, and H. L. Bhat, J. Appl. Phys. 80, 1112 (1996). 11. S. Iyer, L. Small, S. M. Hedge, K. K. Bajaj, and A. Abul-Fadl, J. Appl. Phys. 77, 5902 (1995). 12. A. Bignazzi, A. Bosacchi, and R. Magnanini, J. Appl. Phys. 81, 7540 (1997). 13. D. A. Shaw and P. R. Thorton, J. Mater. Sci. 3, 507 (1968). 14. P. Hidalgo, J. L. Plaza, B. Méndez, E. Diéguez, and J. Piqueras, J. Phys.: Condens. Matter 14, 13211 (2002). 15. G. Benz and R. Conradt, Phys. Rev. B 16, 843 (1977). 16. U. Pal, P. Fernández, J. Piqueras, N. V. Sochinskii, and E. Diéguez, J. Appl. Phys. 78, 1992 (1995). 17. B. B. Kosicki and W. Paul, Phys. Rev. Lett. 17, 246 (1966). 18. P. S. Dutta, K. S. Koteswara Rao, K. S. Sangunni, H. L. Bath, and V. Kumar, Appl. Phys. Lett. 65, 1412 (1994). 19. D. A. Cusano, Solid State Commun. 2, 353 (1964). 20. B. G. Yacobi and D. B. Holt, Cathodoluminescence Microscopy of Inorganic Solids (Plenum Press, New York, 1990). 21. J. Doerschel, Mater. Sci. Eng., B 28, 142 (1994).