On the electromagnetic nature of dark energy and the origin of cosmic magnetic fields



Downloads per month over past year

López Maroto, Antonio and Beltrán Jiménez, José (2011) On the electromagnetic nature of dark energy and the origin of cosmic magnetic fields. Progress of Theoretical Physics Supplement (190). pp. 33-41. ISSN 0375-9687

Official URL: http://dx.doi.org/10.1143/PTPS.190.33


In this work we consider quantum electromagnetic fields in an expanding universe. We start by reviewing the difficulties found when trying to impose the Lorenz condition in a time dependent geometry. Motivated by this fact, we explore the possibility of extending the electromagnetic theory by allowing the scalar state which is usually eliminated by means of the Lorenz condition to propagate, preserving at the same time the dynamics of ordinary transverse photons. We show that the new state cannot be generated by charged currents, but it breaks conformal invariance and can be excited gravitationally. In fact, primordial quantum fluctuations produced during inflation can give rise to super-Hubble temporal electromagnetic modes whose energy density behaves as a cosmological constant. The value of the effective cosmological constant is shown to agree with observations provided inflation took place at the electroweak scale. The theory is compatible with all the local gravity tests and is free from classical or quantum instabilities. Thus we see that, not only the true nature of dark energy can be established without resorting to new physics, but also the value of the cosmological constant finds a natural explanation in the context of standard inflationary cosmology. On sub-Hubble scales, the new state generates an effective charge density which, due to the high electric conductivity of the cosmic plasma after inflation, gives rise to both vorticity and magnetic fields. Present upper limits on vorticity coming from CMB anisotropies are translated into lower limits on the present value of cosmic magnetic fields. We find that magnetic fields B(lambda) > 1 (-12) G can be typically generated with coherence lengths ranging from sub-galactic scales up to the present Hubble radius. Those fields could act as seeds for a galactic dynamo or even account for observations just by collapse and differential rotation of the protogalactic cloud.

Item Type:Article
Additional Information:

Copyright © 2011 Progress of Theoretical Physics.
El Texto completo del artículo accediendo a la URL oficial o a la de arXiv.org
This work has been supported by MICINN (Spain) project numbers FIS 2008-01323 and FPA 2008-00592, CAM/UCM 910309, MEC grant BES-2006-12059 and MICINN Consolider-Ingenio MULTIDARK CSD2009-00064

Uncontrolled Keywords:Physics, Multidisciplinary
Subjects:Sciences > Physics
ID Code:26137
Deposited On:07 Jul 2014 17:39
Last Modified:07 Jul 2014 17:45

Origin of downloads

Repository Staff Only: item control page