Publication:
Evidence of phosphorus incorporation into InGaAs/InP epilayersafter thermal annealing

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2003-06-01
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We report on Raman scattering measurements on annealed In0.53Ga0.47As/InP layers that reveal the outdiffusion of phosphorus from, the substrate and its, possible incorporation in substitutional positions in. the In0.53Ga0.47As lattice. Raman signal associated with InP-like modes was detected in the annealed samples. The effect is also observed in samples where the substrate was protected by a SiNx:H capping and were annealed in arsenic atmosphere, thus ruling out the possibility of a surface contamination by atmospheric phosphorus evaporated from the InP substrate.. Protruding regions. of a few microns were observed on the surface, which were identified as misoriented In1-xGaP and InP crystals by means of micro-Raman measurements. (C) 2003 American Institute of Physics.
Description
© 2003 American Institute of Physics. The authors wish to thank Professor J. Jiménez for his useful comments on the manuscript. This work was partially supported by DGICYT Grant No. PB97-1254 and by CICYT Grant No. TIC-98/0740. One of the authors (S. H.) acknowledges support from Departament d’Universitats i Recerca de la Generalitat de Catalunya.
Unesco subjects
Keywords
Citation
1) F. E. Ejeckam, C. L. Chua, Z. H. Zhu, Y. H. Lo, M. Hong, and R. Bhat, Appl. Phys. Lett., 67, 3936 (1995). 2) M. V. Rao, Nucl. Instrum. Methods Phys. Res. B, 79, 645 (1993). 3) M. V. Rao, S. M. Gulwadi, P. E. Thompson, A. Fathimulla, and O. A. Aina, J. Electron. Mater., 18, 131 (1989). 4) T. Penna, B. Tell, A. S. H. Liao, T. J. Bridges, and G. Burkhardt, J. Appl. Phys., 57, 351 (1985). 5) M. V. Rao and W. Kruppa, Electron. Lett., 22, 299 (1986). 6) M. N. Blanco, E. Redondo, F. Calle, I. Mártil, and G. González-Díaz, J. Appl. Phys., 87, 3478 (2000). 7) T. P. Pearsall, R. Carles, and J. C. Portal, Appl. Phys. Lett., 42, 436 (1983). 8) J. P. Estrera, P. D. Stevens, R. Glosser, W. M. Duncan, Y. C. Kao, H. Y. Liu, and E. A. Beam III, Appl. Phys. Lett., 61, 1927 (1992). 9) R. Cuscó, L. Artús, S. Hernández, J. Ibáñez, and M. Hopkinson, Phys. Rev. B, 65, 035210 (2002). 10) A. Pinczuk, J. M. Worlock, R. E. Nahory, and M. A. Pollack, Appl. Phys. Lett., 33, 461 (1978). 11) R. K. Soni, S. C. Abbi, K. P. Jain, M. Balkanski, S. Slempkes, and J. L. Benchimol, J. Appl. Phys., 59, 2184 (1986). 12) B. Jusserand and S. Slempkes, Solid State Commun., 49, 95 (1984). 13) S. M. Kelso, D. E. Aspnes, M. A. Pollack, and R. E. Nahory, Phys. Rev. B, 26, 6669 (1982). 14) R. F. Scholz and U. Gösele, J. Appl. Phys., 87, 704 (2000). 15) R. Beserman, C. Hirlimann, M. Balkanski, and J. Chevalier, Solid State Commun., 20, 485 (1976). 16) E. Bedel, R. Carles, G. Landa, and J. B. Renucci, Rev. Phys. Appl., 19, 17 (1984). 17) S. J. Yu, H. Asahi, S. Emura, H. Sumida, S. Gonda, and H. Tanoue, J. Appl. Phys., 66, 856 (1989). 18) R. Cuscó, G. Talamás, L. Artús, J. M. Martín, and G. González-Díaz, J. Appl. Phys., 79, 3927 (1996). 19) M. Wihl, M. Cardona, and J. Tauc, J. Non-Cryst. Solids, 8, 172 (1972). 20) L. Artús, R. Cuscó, J. Ibáñez, J. M. Martín, and G. González-Díaz, J. Appl. Phys., 82, 3736 (1997). 21) R. Cuscó, J. Ibáñez, and L. Artús, Phys. Rev. B, 57, 12 197 (1998).
Collections