Publication:
Scanning tunneling spectroscopy study of silicon and platinum assemblies in an opal matrix

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2002-11-13
Authors
Piqueras de Noriega, Javier
Golubev, VG.
Kurdyukov, D.A.
Pevtsov, A. B.
Zamoryanskaya, M. V.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Inst Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Scanning tunneling microscopy and scanning tunneling spectroscopy (STS) are used to investigate the local electronic behavior of Pt-Si nanostructures fabricated in an opal matrix formed by silica spheres of 250 nm diameter. Si and Pt are regularly distributed inside the opal pores and form nanoscale metal-semiconductor-metal junctions. Normalized differential conductance curves enable us to study the distribution of Pt and Si and to detect the presence of regions showing a surface band gap in the range 0.5-0.8 eV, possibly associated with the formation of silicides. STS appears as a suitable technique for the electrical characterization of opal-based nanostructures.
Description
© 2000 American Institute of Physics. This work was supported by DGES (Project No. PB96-0639), the Russian R&D program ‘‘Nanostructures’’ (Grant No. 97-2016) and RFBR under Grant No. 98-02-17350.
Unesco subjects
Keywords
Citation
1. Yu. A. Vlasov, V. N. Astratov, O. Z. Karimov, and A. A. Kaplyanskii, Phys. Rev. B 55, 13357 (1997). 2. V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, Phys. Rev. E 55, 7619 (1997). 3. A. Blanco, C. López, R. Mayoral, H. Mı´guez, F. Meseguer, A. Mifsud, and J. Herrero, Appl. Phys. Lett. 73, 1781 (1998). 4. N. A. Feoktistov, V. G. Golubev, J. L. Hutchison, D. A. Kurdyukov, A. B. Pevtsov, R. Schwarz, J. Sloan, and L. M. Sorokin, Mater. Res. Soc. Symp. Proc. 609, A24.4.1 (2000). 5. V. N. Bogomolov, N. A. Feoktistov, V. G. Golubev, J. L. Hutchison, D. A. Kurdyukov, A. B. Pevtsov, R. Schwarz, J. Sloan, and L. M. Sorokin, J. Non-Cryst. Solids 266–269, 1021 (2000). 6. R. J. Hamers, R. M. Tromp, and J. E. Demuth, Phys. Rev. Lett. 56, 1972 (1986). 7. A. Asenjo, A. Buendía, J. M. Gómez-Rodríguez, and A. Baró, J. Vac. Sci. Technol. B 12, 1658 (1994). 8. G. Panin, C. Díaz-Guerra, and J. Piqueras, Appl. Phys. Lett. 72, 2129 (1998). 9. J. A. Stroscio, R. M. Feenstra, and A. P. Fein, Phys. Rev. Lett. 57, 2579 (1986). 10. N. D. Lang, Phys. Rev. B 34, 5947 (1986). 11. R. M. Feenstra, J. A. Stroscio, and A. P. Fein, Surf. Sci. 181, 295 (1987). 12. N. A. Feoktistov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, V. V. Ratnikov, L. M. Sorokin, J. L. Hutchison, and J. Sloan (unpublished results). 13. B. Tsui and M. Chen, J. Appl. Phys. 68, 6246 (1990). 14. S. Jin, H. Bender, R. A. Donaton, and K. Maex, Inst. Phys. Conf. Ser. 157, 497 (1997). 15. O. Bisi and C. Calandra, J. Phys. C 14, 5479 (1981). 16.M. Tabe and M. Tanimoto, Appl. Phys. Lett. 58, 2105 (1991). 17. H. Watanabe, K. Fujita, and M. Ichikawa, Appl. Phys. Lett. 72, 1987 (1998).
Collections