Publication:
Effects of PVDF-HFP concentration on membrane distillation performance and structural morphology of hollow fiber membranes

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2010-02-01
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier B. V.
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Poly(vinylidene fluoride-hexafluoropropylene), PVDF-HFP, hollow fiber membranes were prepared by the dry/wet spinning technique using different copolymer concentrations in the dope solutions ranging from 17 to 24 wt.%. All the spinning parameters were maintained constant except the copolymer concentration. The morphological properties of the hollow fiber membranes were studied in terms of scanning electron microscopy (SEM), atomic force microscopy (AFM) and void volume fraction. The effects of PVDF-HFP content in the spinning solutions were also studied by measuring the water entry pressure and direct contact membrane distillation (DCMD) permeate flux of the hollow fiber membranes. An increase in the copolymer concentration of the spinning solution resulted in a decrease in the precipitation rate and a transition of the cross-section structure from a finger-type structure to a sponge-type structure. Pore size, nodule size and roughness parameters of both the internal and external hollow fiber surfaces were determined by AFM. It was observed that the pore size decreased in both the internal and external surfaces of the hollow fiber membranes with increasing the copolymer concentration and reached a minimum value at the outer surface for PVDF-HFP concentrations greater than 20 wt.%. Water entry pressure values were decreased whereas both the void volume fraction and the DCMD permeate flux increased with decreasing the copolymer concentration.
Description
© 2009 Elsevier B.V. The authors gratefully acknowledge the financial support of the Spanish Ministry of Science and Education (MEC) (Project FIS2006-05323) and the UCM-BSCH (Project GR58/08, UCM group 910336). M. Essalhi is thankful to the Middle East Desalination Research Centre for the grant (MEDRC 06-AS007).
UCM subjects
Unesco subjects
Keywords
Citation
[1] M. Khayet, Membrane distillation, in: N.N. Li, A.G. Fane, W.S.W. Ho, T. Matsuura (Eds.), Advanced Membrane Technology and Applications, John Wiley & Sons, New Jersey, 2008, pp. 297–370. [2] M.S. El-Bourawi, Z. Ding, R. Ma, M. Khayet, A framework for better understanding membrane distillation separation process, J. Membr. Sci. 285 (2006) 4–29. [3] M. Qtaishat, D. Rana, M. Khayet, T. Matsuura, Preparation and characterization of novel hydrophobic/hydrophilic polyetherimide composite membranes for desalination by direct contact membrane distillation, J. Membr. Sci. 327 (2009) 264–273. [4] M.A. Izquierdo Gil, M.C. García Payo, C. Fernández Pineda, Direct contact membrane distillation of sugar aqueous solutions, Sep. Sci. Technol. 34 (1999) 1773–1801. [5] Z.P. Zhao, F.W. Ma, W.F. Liu, D.Z. Liu, Concentration of ginseng extracts aqueous solution by vacuum membrane distillation. 1. Effects operating conditions, Desalination 234 (2008) 152–157. [6] M. Gryta, M. Tomaszewska, K. Karakulski, Wastewater treatment by membrane distillation, Desalination 198 (2006) 67–73. [7] M.C. García Payo, M.A. Izquierdo Gil, C. Fernández Pineda, Air gap membrane distillation of aqueous alcohol solutions, J. Membr. Sci. 169 (2000) 61–80. [8] M.C. García Payo, C.A. Rivier, I.W.Marison, U. von Stockar, Separation of binary mixtures by thermostatic sweeping gas membrane distillation: II. Experimental results with aqueous formic acid solutions, J. Membr. Sci. 198 (2002) 197–210. [9] M. Khayet, A. Velázquez, J.I. Mengual, Direct contact membrane distillation of humic acid solutions, J. Membr. Sci. 240 (2004) 123–128. [10] M.S. EL-Bourawi, M. Khayet, R. Ma, Z. Ding, Z. Li, X. Zhang, Application of vacuum membrane distillation for ammonia removal, J. Membr. Sci. 301 (2007) 200–209. [11] M. Gryta, Fouling in direct contact membrane distillation process, J. Membr. Sci. 325 (2008) 383–394. [12] S. Al-Obaidani, E. Curcio, F. Macedonio, G. Di Profio, H. Al-Hinai, E. Drioli, Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation, J. Membr. Sci. 323 (2008) 85–98. [13] L. Martínez, J.M. Rodríguez Maroto, Membrane thickness reduction effects on direct contact membrane distillation performance, J. Membr. Sci. 312 (2008) 143–156. [14] M. Tomaszewska, Preparation and properties of flat-sheet membranes from poly(vinylidene) fluoride for membrane distillation, Desalination 104 (1996) 1–11. [15] M. Khayet, T. Matsuura, Preparation and characterization of polyvinylidene fluoride membranes for membrane distillation, Ind. Eng. Chem. Res. 40 (2001) 5710. [16] H.H. Park, B.R. Deshwal, I.W. Kim, H.K. Lee, Absorption of SO2 from flue gas using PVDF hollow fiber membranes in a gas–liquid contactor, J. Membr. Sci. 319 (2008) 29–37. [17] W.H. Seol, Y.M. Lee, J.K. Park, Enhancement of the mechanical properties of PVdF membranes by non-solvent aided morphology control, J. Power Sources 170 (2007) 191–195. [18] M. Zhang, A.Q. Zhang, B.K. Zhu, C.H. Du, Y.Y. Xu, Polymorphism in porous poly(vinylidene fluoride) membranes formed via immersion precipitation process, J. Membr. Sci. 319 (2008) 169–175. [19] A.M. Stephan, D. Teeters, Characterization of PVDF-HFP polymer membranes prepared by phase inversion techniques. I. Morphology and charge–discharge studies, Electrochim. Acta 48 (2003) 2143–2148. [20] N.T.K. Sundaram, A. Subramania, Microstructure of PVDF-co-HFP based electrolyte prepared by preferential polymer dissolution process, J. Membr. Sci. 289 (2007) 1–6. [21] A.M. Stephan, N.G. Renganathan, S. Gopukumar, D. Teeters, Cycling behavior of poly(vinylidene fluoride-co-hexafluoro propylene) (PVDF-HFP) membranes prepared by phase inversion method, Mater. Chem. Phys. 85 (2004) 6–11. [22] J.H. Cao, B.K. Zhu, Y.Y. Xu, Structure and ionic conductivity of porous polymer electrolytes based on PVDF-HFP copolymer membranes, J. Membr. Sci. 281 (2006) 446–453. [23] Y.J. Hwang, S.K. Jeong, K.S. Nahm, A.M. Stephan, Electrochemical studies on poly(vinylidene fluoride-hexafluoropropylene) membranes prepared by phase inversion method, Eur. Polym. J. 43 (2007) 65–71. [24] G.C. Li, P. Zhang, H.P. Zhang, L.C. Yang, Y.P. Wu, A porous polymer electrolyte based on P(VDF-HFP) prepared by simple phase separation process, Electrochem. Commun. 10 (2008) 1883–1885. [25] X. Tian, X. Jiang, Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) membranes for ethyl acetate removal from water, J. Hazard. Mater. 153 (2008) 128–135. [26] C. Feng, R. Wang, B. Shi, G. Li, Y. Wu, Factors affecting pore structure and performance of poly(vinylidene fluoride-co-hexafluoropropylene) asymmetric porous membrane, J. Membr. Sci. 277 (2006) 55–64. [27] T.S.N. Chung, Fabrication of hollow-fiber membranes by phase inversion, in: N.N. Li, A.G. Fane, W.S.W. Ho, T. Matsuura (Eds.), Advanced Membrane Technology and Applications, John Wiley & Sons, New Jersey, 2008, pp. 821–840. [28] M. Khayet, M.C. García Payo, F.A. Qusay, K.C. Khulbe, C.Y. Feng, T. Matsuura, Effects of gas gap type on structural morphology and performance of hollow fibers, J. Membr. Sci. 311 (2008) 259–269. [29] M. Khayet, The effects of air gap length on the internal and external morphology of hollow fiber membranes, Chem. Eng. Sci. 58 (2003) 3091–3104. [30] J. Qin, T.S. Chung, Effect of dope flow rate on the morphology, separation performance, thermal and mechanical properties of ultrafiltration hollow fiber membranes, J. Membr. Sci. 157 (1999) 35–51. [31] A.F. Ismail, M.I. Mustaffar, R.M. Illias, M.S. Abdullah, Effect of dope extrusion rate on morphology and performance of hollow fibers membrane for ultrafiltation, Sep. Purif. Technol. 49 (2006) 10–19. [32] S. Mok, D.J. Worsfold, A.E. Fouda, T. Matsuura, S. Wang, K. Chan, Study on the effect of spinning conditions and surface treatment on the geometry and performance of polymeric hollow-fibre membranes, J. Membr. Sci. 100 (1995) 183–192. [33] S. Elmore, G.G. Lipscomb, Analytical approximations of the effect of a fiber size distribution on the performance of hollow fiber membrane separation devices, J. Membr. Sci. 98 (1995) 49–56. [34] M. Khayet, C.Y. Feng, K.C. Khulbe, T. Matsuura, Study on the effect of a nonsolvent additive on the morphology and performance of ultrafiltration hollowfiber membranes, Desalination 148 (2002) 31–37. [35] D. Wang, K. Li, W.K. Teo, Preparation and characterization of polyvinylidene fluoride (PVDF) hollow fiber membranes, J. Membr. Sci. 163 (1999) 211–220. [36] M.L. Yeow, Y.T. Liu, K. Li, Morphological studies of poly(vinylidene fluoride) asymmetric membranes: effect of the solvent, additive and dope temperature, J. Appl. Polym. Sci. 92 (2004) 1782–1789. [37] M. Khayet, C. Feng, K.C. Khulbe, T. Matsuura, Preparation and characterization of polyvinylidene fluoride hollow fiber membranes for ultrafiltration, Polymer 43 (2002) 3879–3890. [38] S. Bonyadi, T.S. Chung, Highly porous and macrovoid-free PVDF hollow fiber membranes for membrane distillation by a solvent-dope solution co-extrusion approach, J. Membr. Sci. 331 (2009) 66–74. [39] K.Y. Wang, T.S. Chung, M. Gryta, Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the freshwater production through membrane distillation, Chem. Eng. Sci. 63 (2008) 2587–2596. [40] L. Shi, R. Wang, Y. Cao, C. Feng, D.T. Liang, J.H. Tay, Fabrication of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) asymmetric microporous hollow fiber membranes, J. Membr. Sci. 305 (2007) 215–225. [41] L. Shi, R. Wang, Y. Cao, D.T. Liang, J.H. Tay, Effect of additives on the fabrication of poly(vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP) asymmetric microporous hollow fiber membranes, J. Membr. Sci. 315 (2008) 195–204. [42] K.C. Khulbe, C.Y. Feng, F. Hamad, T. Matsuura, M. Khayet, Structural and performance study of micro porous polyetherimide hollow fiber membranes prepared at different air gap, J. Membr. Sci. 245 (2004) 191–198. [43] M.C. García Payo, M.A. Izquierdo Gil, C. Fernández Pineda, Wetting study of hydrophobic membranes via liquid entry pressure measurements with aqueous alcohol solutions, J. Colloid Interface Sci. 230 (2002) 420–431. [44] M. Qtaishat, T. Matsuura, B. Kruczek, M. Khayet, Heat and mass transfer analysis in direct contact membrane distillation, Desalination 219 (2008) 272–292.
Collections