Publication:
Relaxation labeling in stereo image matching

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2000-01
Authors
Pajares Martinsanz, Gonzalo
Cruz García, Jesús Manuel de la
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Pergamon-Elsevier Science LTD
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
This paper outlines a method for solving the global stereovision matching problem using edge segments as the primitives. A relaxation scheme is the technique commonly used by existing methods to solve this problem. These techniques generally impose the following competing constraints: similarity, smoothness, ordering and uniqueness, and assume a bound on the disparity range. The smoothness constraint is basic in the relaxation process. We have verified that the smoothness and ordering constraints can be violated by objects close to the cameras and that the setting of the disparity limit is a serious problem. This problem also arises when repetitive structures appear in the scene (i.e. complex images), where the existing methods produce a high number of failures. We develop our approach from a relaxation labeling method ([1] W.J. Christmas, J. Kittler, M. Petrou, structural matching in computer vision using probabilistic relaxation, IEEE Trans. Pattern Anal. Mach. Intell. 17(8)(1995) 749-764), which allows us to map the above constraints. The main contribution is made, (1) by applying a learning strategy in the similarity constraint and (2) by introducing specific conditions to overcome the violation of the smoothness constraint and to avoid the serious problem produced by the required fixation of a disparity limit. Consequently, we improve the stereovision matching process. A better performance of the proposed method is illustrated by comparative analysis against some recent global matching methods.
Description
© 1999 Pattern Recognition Society
Unesco subjects
Keywords
Citation
[1] W.J. Christmas, J. Kittler, M. Petrou, Structural matching in computer vision using probabilistic relaxation, IEEE Trans. Pattern Anal. Mach. Intell. 17 (8) (1995) 749-764. [2] A.R. Dhond, J.K. Aggarwal, Structure from stereo } a review, IEEE Trans. Systems Man Cybernet. 19 (1989) 1489-1510. [3] T. Ozanian, Approaches for stereo matching - a review, Modeling Identi"cation Control 16 (2) (1995) 65-94. [4] G. Pajares, Estrategia de solucion al problema de la correspondencia en vision estereoscopica por la jerarquía metodologica y la integracion de criterios, Ph.D. Thesis, Facultad de C.C. Fisicas, U.N.E.D., Department of Informatica y Automatica, Madrid, 1995. [5] S. Barnard, M. Fishler, Computational stereo,ACM Comput, Surveys 14 (1982) 553-572. [6] K.S. Fu, R.C. GonzaH lez, C.S.G. Lee, RoboH tica: Control, Detección, Visión e Inteligencia, McGraw-Hill, Madrid, 1988. [7] D.H. Kim, R.H. Park, Analysis of quantization error in line-based stereo matching, Pattern Recognition 8 (1994) 913-924. [8] G. Medioni, R. Nevatia, Segment based stereo matching, Comput. Vision Graphics Image Process. 31 (1985) 2-18. [9] H.H. Baker, Building and Using Scene Representations in Image Understanding, AGARD-LS-185 Machine Perception. 1982, 3.1-3.11. [10] I.J. Cox, S.L. Hingorani, S.B. Rao, B.M. Maggs, A maximum likelihood stereo algorithm, Comput. Vision Image Understanding 63 (2) (1996) 542-567. [11] P. Fua, A Parallel Algorithm that produces dense depth maps and preserves image features, Mach. Vision Appl. 6 (1993) 35}49. [12] J.J. Lee, J.C. Shim, Y.H. Ha, Stereo correspondence using the Hop"eld neural network of a new energy function, Pattern Recognition 27 (11) (1994) 1513-1522. [13] Y. Shirai, Three-Dimensional Computer Vision, Springer, Berlin, 1983. [14] Y. Zhou, R. Chellappa, Artificial Neural Networks for Computer Vision, Springer, New York, 1992. [15] W.E.L. Grimson, Computational experiments with a feature-based stereo algorithm, IEEE Trans. Pattern Anal. Mach. Intell. 7 (1985) 17-34. [16] A. Khotanzad, A. Bokil, Y.W. Lee, Stereopsis by constraint learning feed-forward neural networks, IEEE Trans. Neural Networks 4 (1993) 332-342. [17] Y.C. Kim, J.K. Aggarwal, Positioning three-dimensional objects using stereo images, IEEE J. Robot. Automat. 3 (1987) 361-373. [18] V.R. Lutsiv, T.A. Novikova, On the use of a neurocomputer for stereoimage processing, Pattern Recognition Image Anal. 2 (1992) 441-444. [19] D. Maravall, E. Fernandez, Contribution to the matching problem in stereovision, Proceedings of the 11th IAPR: International Conference in Pattern Recognition, The Hague, 1992, pp. 411-414. [20] D. Marr, La Vision, Alianza Editorial, Madrid, 1985. [21] D. Marr, Vision, Freeman, San Francisco, 1982. [22] D. Marr, T. Poggio, A computational theory of human stereovision, Proc. Roy. Soc. London B 207 (1979) 301-328. [23] D. Marr, T. Poggio, Cooperative computation of stereo disparity, Science 194 (1976) 283-287. [24] M.S. Mousavi, R.J. Schalko!, ANN Implementation of stereo vision using a multi-layer feedback architecture, IEEE Trans. Systems Man Cybernet. 24 (8) (1994) 1220-1238. [25] P. Rubio, Analisis comparativo de Metodos de Correspondencia estereoscopica, Ph.D. Thesis, Facultad de Psicologia, Universidad Complutense, Madrid, 1991. [26] P. Rubio, RP: un algoritmo eficiente para la búsqueda de correspondencias en visión estereoscópica, Informática y Automática 26 (1993) 5-15. [27] Y. Ruycheck, J.G. Postaire, A neural network algorithm for 3-D reconstruction from stereo pairs of linear images, Pattern Recognition Lett. 17 (1996) 387-398. [28] N. Ayache, B. Faverjon, E$cient registration of stereo images by matching graph descriptions of edge segments, Int. J. Comput. Vision 1 (1987) 107-131. [29] H.H. Baker, T.O. Binford, Depth from edge and intensity based stereo, in: Proceedings of the 7th International Joint Conference Artficial Intellengence, Vancouver, Canada, 1981, pp. 631-636. [30] K.L. Boyer, A.C. Kak, Structural Stereopsis for 3-D vision, IEEE Trans. Pattern Anal. Mach. Intell. 10 (2) (1988) 144-166. [31] J.M. Cruz, G. Pajares, J. Aranda, A neural network approach to the stereovision correspondence problem by unsupervised learning, Neural Networks. 8 (5) (1995) 805-813. [32] J.M. Cruz, G. Pajares, J. Aranda, J.L.F. Vindel, Stereo matching technique based on the perceptron criterion function, Pattern Recognition Letters. 16 (1995) 933-944. [33] W. Hoff, N. Ahuja, Surface from Stereo: Integrating feature matching, disparity estimation, and contour detection, IEEE Trans. Pattern Anal. Mach. Intell. 11 (1989) 121-136. [34] D.H. Kim, W.Y. Choi, R.H. Park, Stereo matching technique based on the theory of possibility, Pattern Recognition Lett. 13 (1992) 735-744. [35] Y. Ohta, T. Kanade, Stereo by intra- and inter-scanline search using dynamic programming, IEEE Trans. Pattern Anal. Mach. Intell. 7 (2) (1985) 139-154. [36] G. Pajares, J.M. Cruz, J. Aranda, Relaxation by Hopfield network in stereo image matching, Pattern Recognition 31 (5) (1998) 561-574. [37] L.G. Shapiro, R.M. Haralick, Structural descriptions and inexact matching, IEEE Trans. Pattern Anal. Machine Intell. 3 (5) (1981) 504-519. [38] M.S. Wu, J.J. Leou, A bipartite matching approach to feature correspondence in stereo vision, Pattern Recognition Letters 16 (1995) 23-31. [39] D.M. Wuescher, K.L. Boyer, Robust contour decomposition using a constraint curvature criterion, IEEE Trans. Pattern Anal. Mach. Intell. 13 (1) (1991) 41-51. [40] R.M. Haralick, L.G. Shapiro, Computer and Robot Vision, Vols. I and II, Addison-Wesley, Reading, MA, 1992, 1993. [41] M. Sonka, V. Hlavac, R. Boyle, Image Processing, Analysis and Machine Vision, Chapman & Hall, London, 1995. [42] A. Rosenfeld, R. Hummel, S. Zucker, Scene labelling by relaxation operation, IEEE Trans. Systems Man Cybernet. 6 (1976) 420-453. [43] S.T. Barnard, W.B. Thompson, Disparity analysis of images, IEEE Trans. on Pattern Anal. Mach. Intell. 13 (1982) 333-340. [44] R. Hummel, S. Zucker, On the foundations of relaxation labeling processes, IEEE Trans. Pattern Anal. Mach. Intell. 5 (1983) 267-287. [45] A. Laine, G. Roman, A parallel algorithm for incremental stereo matching on SIMD machines, IEEE Trans. Robot. and Automat. 7 (1991) 123-134. [46] S. Lloyd, E. Haddow, J. Boyce, A parallel binocular stereo algorithm utilizing dynamic programming and relaxation labelling, Comput. Vision Graphics Image Process. 39 (1987) 202-225. [47] N.M. Nasrabadi, A stereo vision technique using curvesegments and relaxation matching, IEEE Trans. Pattern Anal. Mach. Intell. 14 (5) (1992) 566-572. [48] S. Peleg, A new probabilistic relaxation scheme, IEEE Trans. Pattern Anal. Mach. Intell. 2 (1980) 362-369. [49] K. Prazdny, Detection of binocular disparities, Biol. Cybernet. 52 (1985) 93-99. [50] K.E. Price, Relaxation matching techniques - a comparison, IEEE Trans. Pattern Anal. Mach. Intell. 7 (5) (1985) 617-623. [51] S. Ranade, A. Rosenfeld, Point pattern matching by relaxation, Pattern Recognition 12 (1980) 269-275. [52] D. Sherman, S. Peleg, Stereo by incremental matching of contours, IEEE Trans. Pattern Anal. Mach. Intell. 12 (1990) 1102-1106. [53] C. Stewart, C. Dyer, Simulation of a connectionist stereo algorithm on a memory-shared multiprocessor, in: V. Kumar (Ed.), Parallel Algorithms for Machine Intelligence and Vision, Springer, Berlin, 1990, pp. 341-359. [54] C.Y. Wang, H. Sun, S. Yada, A. Rosenfeld, Some experiments in relaxation image matching using corner features, Pattern Recognition 16 (2) (1983) 167-182. [55] N.M. Nasrabadi, C.Y. Choo, Hopfield network for stereovision correspondence, IEEE Trans. Neural Networks 3 (1992) 123-135. [56] Y.-H. Tseng, J.-J. Tzen, K.-P. Tang, S.-H. Lin, Image-toimage registration by matching area features using Fourier descriptors and neural networks, Photogrammetric Eng. Remote Sensing 63 (8) (1997) 975-983. [57] U.R. Dhond, J.K. Aggarwal, Stereo matching in the presence of narrow occluding objects using dynamic disparity search, IEEE Trans. Pattern Anal. Mach. Intell. 17 (7) (1995) 719-724. [58] T. Pavlidis, Why progress in machine vision is so slow, Pattern Recognition Lett. 13 (1992) 221-225. [59] A. Huertas, G. Medioni, Detection of intensity changes with subpixel accuracy using Laplacian}Gaussian masks, IEEE Trans. Pattern Anal. Mach. Intell. 8 (5) (1986) 651-664. [60] D. Marr, E. Hildreth, Theory of edge detection, Proc. Roy. Soc. London B 207 (1980) 187-217. [61] J.G. Leu, H.L. Yau, Detecting the dislocations in metal crystals from microscopic images, Pattern Recognition 24 (1991) 41-56. [62] M.S. Lew, T.S. Huang, K. Wong, Learning and feature selection in stereo matching, IEEE Trans. Pattern Anal. Mach. Intell. 16 (9) (1994) 869-881. [63] E.P. Krotkov, Active Computer Vision by Cooperative Focus and Stereo, Springer, New York, 1989. [64] S. Tanaka, A.C. Kak, A rule-based approach to binocular stereopsis, in: R.C. Jain, A.K. Jain (Eds.), Analysis and Interpretation of range images, Springer, Berlin, 1990, pp. 33-139. [65] R. Nevatia, K.R. Babu, Linear feature extraction and description, Comput. Vision Graphics Image Process. 13 (1980) 257-269. [66] R.O. Duda, P.E. Hart, Pattern Classi"cation and Scene Analysis, Wiley, New York, 1973. [67] S. Haykin, Neural Networks: A Comprehensive Foundation, Macmillan College Publishing Company, New York, 1994. [68] B. Kosko, Neural Networks and Fuzzy Systems, Prentice-Hall Englewood Cliffs, NJ, 1992. [69] A.M.N. Fu, H. Yan, A new probabilistic relaxation method based on probability space partition, Pattern Recognition 30 (11) (1997) 1905-1917. [70] S.Z. Li, Matching: invariant to translations, rotations and scale changes, Pattern Recognition 25 (1992) 583-594. [71] J. Majumdar, Seethalakshmy, E$cient parallel processing for depth calculation using stereo, Robot. Autonomous Systems 20 (1997) 1-13.
Collections