Publication:
Comparison of different wastewater treatments for removal of selected endocrine-disruptors from paper mill wastewaters

Research Projects
Organizational Units
Journal Issue
Abstract
There is increasing concern about chemical pollutants that have the ability to mimic hormones, the so-called endocrine-disrupting compounds (EDCs). One of the main reasons for concern is the possible effect of EDCs on human health. EDCs may be released into the environment in different ways, and one of the most significant sources is industrial wastewater. The main objective of this research was to evaluate the treatment performance of different wastewater treatment procedures (biological treatment, filtration, advanced oxidation processes) for the reduction of chemical oxygen demand and seven selected EDCs (dimethyl phthalate, diethyl phthalate, dibutyl phthalate, benzyl butyl phthalate, bis(2-ethylhexyl) phthalate, bisphenol A and nonylphenol) from wastewaters from a mill producing 100 % recycled paper. Two pilot plants were running in parallel and the following treatments were compared: (i) anaerobic biological treatment followed by aerobic biological treatment, ultrafiltration and reverse osmosis (RO), and (ii) anaerobic biological treatment followed by membrane bioreactor and RO. Moreover, at lab-scale, four different advanced oxidation processes (Fenton reaction, photo-Fenton reaction, photocatalysis with TiO2, and ozonation) were applied. The results indicated that the concentrations of selected EDCs from paper mill wastewaters were effectively reduced (100 %) by both combinations of pilot plants and photo-Fenton oxidation (98 %), while Fenton process, photocatalysis with TiO2 and ozonation were less effective (70 % to 90 %, respectively).
Description
This is an Accepted Manuscript of an article published by Taylor & Francis Group in Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering on 09/05/2012, available online: http://www.tandfonline.com/doi/full/10.1080/10934529.2012.672301
Keywords
Citation
[1] Metzer, M.; Pfeiffer, E. Chemistry of natural and antropogenic endocrine active compounds. In Endocrine Disruptors Part 1; Metzer, M., Ed.; Springer: Berlin, 2003; 63-80. [2] Balabanič, D.; Rupnik, M.; Krivograd Klemenčič, A. Negative impact of endocrine-disrupting compounds on human reproductive health. Reprod. Fert. Develop. 2011, 23, 403-11. [3] Fisher, J.S.; Macpherson, S.; Marchetti, N.; Sharpe, R.M. Human ‘testicular dysgenesis syndrome’: a possible model using in utero exposure of the rat to dibutyl phthalate. Hum. Reprod. 2003, 18, 1383-1394. [4] Hamm, U.; Oller, H.J.; Kuwan, K. Endokrine Substanzen in Abwassern der Papierindustrie. IPW 2005a, 1, 45-48. [5] Hamm, U.; Oller, H.J.; Kuwan, K. Endokrine Substanzen in Abwassern der Papierindustrie (II). IPW 2005b, 2, 47-49. [6] Yu, Z.; Peldszus, S.; Huck, P.M. Optimizing gas chromatographic-mass spectrometric analysis of selected pharmaceuticals and endocrine-disrupting substances in water using factorial experimental design. J. Chromatogr. A 2007, 1148, 65-77. [7] Pokhrel, D.; Viraraghavan, T. Treatment of pulp and paper mill wastewater–a review. Sci. Total Environ. 2004, 333, 37-58. [8] Lacorte, S.; Latorre, A.; Barceló, D.; Rigol, A.; Malmqvist, A.; Welander, T. Organic compounds in paper-mill process waters and effluents. Trends. Anal. Chem. 2003, 22, 725-737. [9] Latorre, A.; Malmqvist, A.; Lacorte, S.; Welander, T.; Barceló, D. Evaluation of the treatment efficiencies of paper mill wastewaters in terms of organic composition and toxicity. Environ. Pollut. 2007, 147, 648-655. [10] Balabanič, D.; Krivograd Klemenčič, A. Presence of phthalates, bisphenol A, and nonylphenol in paper mill wastewaters in Slovenia and efficiency of aerobic and combined aerobic-anaerobic biological wastewater treatment plants for their removal. Fresen. Environ. Bull. 2011, 20, 86-92. [11] Kraigher, B.; Kosjek, T.; Heath, E.; Kompare, B.; Mandić-Mulec, I. Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors. Water Res. 2008, 42, 4578-4588. [12] Liu, Y. Chemically reduced excess sludge production in the activated sludge process. Chemosphere 2003, 50, 1-7. [13] Drev, D.; Vrhovšek, D.; Panjan, J. Using Porous Ceramics as a Substrate or Filter Media During the Cleaning of Sewage. J. Mech. Eng. Sci. 2006, 52, 250-63. [14] Shokrollahzadeh, S.; Azizmohseni, F.; Golmohammad, F.; Shokouhi, H.; Khademhaghighat, F. Biodegradation potential and bacterial diversity of a petrochemical wastewater treatment plant in Iran. Bioresource Technol. 2008, 99, 6127-6133. [15] Jones, O.A.H.; Voulvoulis, N.; Lester, J.N. Human Pharmaceuticals in Wastewater Treatment Processes. Crit. Rev. Env. Sci. Tec. 2005, 35, 401-427. [16] Vidal, G.; Diez, M.C. Methanogenic toxicity and continuous anaerobic treatment of wood processing effluents. J. Environ. Manage. 2005, 74, 317-25. [17] Soares, A.; Guieysse, B.; Jefferson, B.; Cartmell, E.; Lester, J.N. Nonylphenol in the environment: A critical review on occurence, fate, toxicity and treatment in wastewaters. Environ. Int. 2008, 34, 1033-1049. [18] Zhao, J.; Li, Y.; Zhang, C.; Zeng, Q.; Zhou, Q. Sorption and degradation of bisphenol A by aerobic activated sludge. J. Hazard. Mater. 2008, 155, 305-311. [19] Liu, Z.H.; Kanjo, Y.; Mizutani, S. Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment - physical means, biodegradation, and chemical advanced oxidation: A review. Sci. Total Environ. 2009, 407, 731-748. [20] Alcock, R.E.; Sweetman, A.; Jones, K.C. Assessment of organic contaminant fate in waste water treatment plants. I. Selected compounds and physiochemical properties. Chemosphere 1999, 38, 2247-2262. [21] Gültekin, I.; Ince, N.H. Synthetic endocrine disruptors in the environment and water remediation by advanced oxidation processes. J. Environ. Manage. 2007, 85, 816-832. [22] Yoon, Y.; Westerhoff, P.; Snyder, S.A.; Wert, E.C. Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products. J. Membrane Sci. 2006, 270, 88-100. [23] Wintgens, T.; Gallenkemper, M.; Melin, T. Endocrine disrupter removal from wastewater using membrane bioreactor and nanofiltration technology. Desalination 2002, 146, 387-391. [24] Glaze, W.H.; Kang, J.W.; Chapin, D.H. The chemistry of water-treatment processes involving ozone, hydrogen-peroxide and ultraviolet-radiation. Ozone-Sci. Eng. 1987, 9, 335-352. [25] Malato, S.; Blanco, J.; Cáceres, J.; Fernández-Alba, A.R.; Agüera, A.; Rodŕýguez, A. Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO2 using solar energy. Catal. Today 2002, 76, 209-220. [26] Katsumata, H.; Kawabe, S.; Kaneco, S.; Suzuki, T.; Ohta, K. Degradation of bisphenol in water by the photo-Fenton reaction. J. Photoch. Photobio. A 2004, 162, 297-305. [27] Amat, A.M.; Arques, A.; Miranda, M.A.; Lopez, F. Use of ozone and/or UV in the treatment of effluents from broad paper industry. Chemosphere 2005, 60, 1111-1117. [28] Yang, G.P.; Zhao, X.K.; Sun, X.J.; Lu, X.L. Oxidative degradation of diethyl phthalate by photochemically-enhanced Fenton reaction. J. Hazard. Mater. 2005, 126, 112-118. [29] Chiou, C.S.; Chen, Y.H.; Chang, C.T.; Chang, C.Y.; Shie, J.L.; Li, Y.S. Photochemical mineralization of di-n-butyl phthalate with H2O2/Fe3+. J. Hazard. Mater. 2006, 135, 344-349. [30] Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000, establishing a framework for Community action in the field of water policy. Official Journal of the European Communities. [31] Directive 2008/105/EC EC of the European Parliament and of the Council of 16 December 2008, on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council. Official Journal of the European Union, L 348/84. [32] Fükazawa, H.; Hoshino, K.; Shiozawa, T.; Matsushita, H.; Terao, Y. Identification and quantification of chlorinated bisphenol A in wastewater from wastepaper recycling plants. Chemosphere 2001, 44, 973-979. [33] Carabias-Martínez, R.; Rodríguez-Gonzalo, E.; Revilla-Ruiz, P. Determination of endocrinedisrupting compounds in cereals by pressurized liquid extraction and liquid chromatography-mass spectrometry: Study of beckground contamination. J. Chromatogr. A 2006, 1137, 207-215. [34] Kersten, A.; Hamm, U.; Schabel, S.; Öller, H.J. Analyse von Papierfabrikationsabwässern vor dem Hintergrund verschärfter EU-Anforderungen. IPW 2006, 6, 90-99. [35] APHA, AWWA, WPCF. Standard methods for the examination of water and wastewater; Washington DC; 2005. [36] Zhang, H.; Choi, H.J.; Huang, C.P. Optimization of Fenton process for the treatment of landfill leachate. J. Hazard. Mater. 2005, 125, 166-174. [37] Hermosilla, D.; Cortijo, M.; Huang, C.P. Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes. Sci. Total Environ. 2009a, 407, 3473-3481. [38] Hermosilla, D.; Cortijo, M.; Huang, C.P. The role of iron on the degradation and mineralization of organic compounds using conventional Fenton and photo-Fenton processes. Chem. Eng. J. 2009b, 155, 637-646. [39] Kuo, W.G. Decolorizing dye wastewater with Fenton’s reagent. Water Res. 1992, 26, 881-886. [40] Kim, S.M.; Geissen, S.U.; Vogelpohl, A. Landfill leachate treatment by a photoassisted Fenton reaction. Water Sci. Technol. 1997, 35, 239-248. [41] Kavitha, V.; Palanivelu, K. The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere 2004, 55, 1235-1243. [42] Chang, C.N.; Ma, Y.S.; Fang, G.C.; Chao, A.C.; Tsai, M.C.; Sung, H.F. Decolorizing of lignin wastewater using the photochemical UV/TiO2 process. Chemosphere 2004, 56, 1011-1017. [43] Rigol, A.; Latorre, A.; Lacorte, S.; Barceló, D. Determination of toxic compounds in paper-recycling process waters by gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry. J Chromatogr. A 2002, 963, 265-275. [44] Lagana, A,; Bacaloni, A.; De Leva, I.; Faberi, A.; Fago, G.; Marino, A. Analytical methodologies for determining the occurrence of endocrine disrupting chemicals in sewage treatment plants and natural waters. Anal. Chim. Acta 2004, 501, 79-88. [45] Vethaak, A.D.; Lahr, J.; Schrap, S.M.; Belfroid, A.C.; Rijs, G.B.J.; Gerritsen, A.; de Boer, J.; Bulder, A.S.; Grinwis, G.C.; Kuiper, R.V.; Legler, J.; Murk, T.A.; Peijnenburg, W.; Verhaar, H.J.; de Voogt, P. An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands. Chemosphere 2005, 59, 511-524. [46] Bodzek, M.; Dudziak, M.; Luks-Betlej, K. Application of membrane techniques to water purification. Removal of phthalates. Desalination 2004, 162, 121-128. [47] Snyder, S.A.; Adham, S.; Redding, A.M.; Cannon, F.S.; DeCarolis, J.; Oppenheimer, J.; Wert, E.C.; Yoon, Y. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 2006, 202, 156-181. [48] Lew, B.; Tarre, S.; Beliavski, M.; Dosoretz, C.; Green, M. Anaerobic membrane bioreactor (AnMBR) for domestic wastewater treatment. Desalination 2009, 243, 251-257. [49] Clara, M.; Strenn, B.; Gans, O.; Martinez, E.; Kreuzinger, N.; Kroiss, N. Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res. 2005, 39, 4797-4807. [50] Comerton, A.M.; Andrews, R.C.; Bagley, D.M.; Hao, C.Y. The rejection of endocrine disrupting and pharmaceutically active compounds by NF and RO membranes as a function of compound a water matrix properties. J. Membrane Sci. 2008, 313, 323-335. [51] Bolong, N.; Ismail, A.F.; Salim, M.R.; Matsuura, T. A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 2009, 239, 229-246. [52] Integrated Pollution Prevention and Control (IPPC). Reference Document on Best Available Techniques in the Pulp and Paper Industry, European Commission, December 2001. [53] Xu, X.R.; Li, S.X.; Li, X.Y.; Gu, J.D.; Chen, F.; Li, X.Z.; Li, H.B. Degradation of n-butyl benzyl phthalate using TiO2/UV. J. Hazard. Mater. 2009, 164, 527-532. [54] Sevimli, M.F. Post-treatment of pulp and paper industry wastewater by advanced oxidation processes. Ozone-Sci. Eng. 2005, 27, 37-43. [55] Wongniramaikul, W.; Liao, C.H.; Kanatharana, P. Diisobutyl phthalate degradation by Fenton treatment. J. Environ. Sci. Heal. A 2007, 42, 567-572. [56] Ioan, I.; Wilson, S.; Lundanes, E.; Neculai, A. Comparison of Fenton and sono-Fenton bisphenol A degradation. J. Hazard. Mater. 2007, 142, 559-563. [57] Gkorgkolia, C.; Bizani, E.; Fytianos, K. Photo-Fenton decomposition of the endocrine disrupting compound di-butyl phthalate. In: Proceedings of the 11th International Conference on Environmental Science and Technology, Chania, Crete, Greece, 3-5 September 2009. [58] Yeber, M.C.; Rodríguez, J.; Freer, J.; Duran, N.; Mansilla, H.D. Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO. Chemosphere 2000, 41, 1193-1197. [59] Perez, M.; Torradez, F.; Garcia-Hortal, J.A.; Domenech, J. Removal of organic contaminants in paper pulp treatment eflluents under Fenton and photo-Fenton conditions. Appl. Catal. B-Environ. 2002, 36, 63-74. [60] Rodrigues, A.C.; Boroski, M.; Shimada, N.S.; Garcia, J.C.; Nozaki, J.; Hioka, N. Treatment of paper pulp and paper mill wastewater by coagulation-flocculation followed by heterogeneous photocatalysis. J. Photoch. Photobio. A 2008, 194, 1-10. [61] Lau, T.K.; Chu, W.; Graham, N. The degradation of endocrine disruptor di-n-butyl phthalate by UV irradiation: a photolysis and product study. Chemosphere 2005, 60, 1045-1053. [62] Chung, Y.C.; Chen, C.Y. Degradation of Di-(2-ethylhexyl) Phthalate (DEHP) by TiO2 Photocatalysis. Water Air Soil Poll. 2009, 200, 191-198.
Collections