Publication:
Combining coagulation, softening and flocculation to dispose reverse osmosis retentates

Research Projects
Organizational Units
Journal Issue
Abstract
The concentrated stream of a reverse osmosis unit was treated by coagulation, softening and flocculation to reduce conductivity and refractory organic matter content. Different polyaluminium chlorides and one ferric salt were used as coagulants, lime was added as softener, and two polymers (anionic and cationic polyacrylamides) were tested as flocculants. Coagulants reduced significantly the presence of refractory compounds by themselves, although conductivity increased. Lime addition decreased conductivity forming precipitates of CaCO3 and Mg(OH)2. When coagulation was combined with flocculation without adding lime, the anionic flocculant was more effective than the cationic one because the specific high hardness of water supplied enough Ca2+ and Mg2+ to promote the formation of bigger flocs, bridging the slightly negative coagula and anionic groups of the polymer; although they also reduced the efficiency of the cationic polyacrylamide. None of the tested flocculants showed any effect on conductivity and refractory organic matter reduction when lime was added.
Description
Keywords
Citation
[1] A. Blanco, C. Negro, C. Monte, E. Fuente, J. Tijero, Environ. Sci. Technol. 38 24 (2004) 414A-420ª [2] R. Ordóñez, D. Hermosilla, E. Fuente, A. Blanco, Ind. Eng. Chem. Res. 48 (2009) 10247-10252. [3] Integrated Pollution Prevention and Control (IPPC): Reference Document on Best Available Techniques in the Pulp and Paper Industry, European Commission, Brussels, 2001. [4] R.Y. Ning, T.L. Troyer, Desalination 208 (2007) 232-237. [5] D. Squire, J. Murrer, P. Holden, C. Fitzpatrick, Desalination 108 (1996) 143-147. [6] M. Mickley, Membrane Concentrate Disposal: Practices and Regulations, U.S. Department of the Interior, Bureau of Reclamation, Technical Service Center, Water Treatment Engineering and Research Group, 2004. 7] S. Sethi, S. Walker, J. Drewes, P. Xu, Florida Water Res. J. June (2006) 38-48. [8] D. Squire, Desalination 132 (2000) 47-54. [9] M. Ahmed, W.H. Shayya, D. Hoey, J. Al-Handaly, Desalination 133 (2001) 135-147. [10] R.Y Ning, T.L. Troyer, Desalination 237 (2009) 238-242. [11] T. Nandy, P. Manekar, R. Dhodapkar, G. Pophali, S. Devotta, Resour. Conserv. Recycl. 51 (2007) 64-77. [12] K. Ranganathan, K. Karunagaran, D.C. Sharma, Resour. Conserv. Recycl. 50 (2007) 306-318. [13] R. Rautenbach, T. Linn, Desalination 105 (1996) 63-70. [14] L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Water Res. 43 (2009) 2317-2348. [15] E. Balanosky, J. Fernández, J. Kiwi, A. López, Water Sci. Technol. 40 (1999) 417-424. [16] K. van Hege, M. Verhaege, W. Verstraete, Electrochem. Comm. 4 (2002) 296-300. [17] C. Allegre, M. Maisseu, F. Charbit, P. Moulin, J. Hazard. Mat. B116 (2004) 57-64. [18] E. Dialynas, D. Mantzavinos, E. Diamadopoulos, Water Res. 42 (2008) 4603-4608. [19] E. Barbot, S. Moustier, J.Y. Botterob, P. Moulin, J. Memb. Sci. 325 (2008) 520-527. [20] W. Yu, L. Guibai, Y. Xu, X. Yang, Powder Technol. 189 (2009) 439-443. [21] J.A. Nason, D.F. Lawler, J. Environ. Eng. 136 (2010) 12-21. [22] M.F. Sevimli, C. Kinaci, Water Sci. Technol. 45 (2002) 279-286. [23] M. Boroski, A.C. Rodrigues, J.C. Garcia, A.P. Gerola, J. Nozaki, N. Hioka, J. Hazard. Mat. 160 (2008) 135-141. [24] R. Miranda, A. Balea, E. Sanchez de la Blanca, I. Carrillo, A. Blanco, Ind. Eng. Chem. Res. 47 (2008) 6239-6250. [25] Standard Methods for the Examination of Water and Wastewater, 21st Edition, APHA, AWWA and WEF, Washington DC, 2005. [26] A. Blanco, E. Fuente, C. Negro, J. Tijero, Can. J. Chem. Eng. 80 (2002) 1-7. [27] D.J. Pernitsky, J.K. Edzwald, J. Water Supply: Res. Technol. - AQUA 55 (2006) 121-141. [28] M. Scholz, in: M.Scholz (Eds.), Wetland Systems to Control Urban Runoff, 1st Edition, Elsevier, The Netherlands, 2006, pp. 135-139. [29] E. Yildiz, A. Nuhoglu, B. Keskinlerb, A. Akay, B. Farizoglu, Desalination 159 (2003) 139-152. [30] M.I. Aguilar, J. Sáez, M. Lloréns, A. Soler, J.F. Ortuño, V. Meseguer, A. Fuentes, Chemosphere 58 (2005) 47-56. [31] A.L. Ahmad, S.S. Wong, T.T. Teng, A. Zuhairi, Chem. Eng. J. 137 (2008) 510-517. [32] D.C. Montgomery, Diseño y análisis de experimentos, Grupo Editorial Iberoamericana, Mexico, 1991. [33] S.-H. Kim, J.-S. Yoon, S. Lee, Desalination Water Treat. 10 (2009) 95-100. [34] A. Torra, F. Valero, J.L. Bisbal, J.F. Tous, Tecnol. Agua 177 (1998) 58-67. [35] C.J. Gabelich, T.I. Yuna, B.M. Coffey, I.H. Suffet, Desalination 150 (2002) 15-30. [36] J. Duan, J. Gregory, Adv. Colloid Interface 100 (2003) 475-502. [37] X.C. Wang, P.K. Jin, J. Gregory, Water Sci. Technol.: Water Supply 2 (2002) 99- 106. [38] M. Yan, D. Wang, J. Nia, J. Qu, C.W.C. Chow, H. Liu, Water Res. 42 (2008) 3361- 3370. [39] B. Bolto, J. Gregory, Water Res. 41 (2007) 2301-2324. [40] C. Negro, L.M. Sánchez, E. Fuente, A. Blanco, J. Tijero, Chem. Eng. Sci. 61 (2006) 2522-2532.
Collections