Publication:
Triplet pair correlations in s-wave superfluids as a signature of the Fulde-Ferrell-Larkin-Ovchinnikov state

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-10-09
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We show that antiparallel triplet pairing correlations are generated in superfluids with purely s-wave interactions whenever population imbalance enforces anisotropic Fulde Ferrell (FF) or inhomogeneous Larkin-Ovchinikov (LO) states. These triplet correlations appear in the Cooper pair wave function, while the triplet part of the gap remains zero. The same set of quasiparticle states contributes to the triplet component and to the polarization, thus spatially correlating them. In the LO case, this set forms a narrow band of Andreev states centered on the nodes of the s-wave order parameter. This picture naturally provides a unifying explanation of previous findings that attractive p-wave interaction stabilizes FFLO states. We also study a similar triplet mixing which occurs when a balanced two-component system displays FFLO-type oscillations due to a spin dependent optical lattice. We discuss how this triplet component can be measured in systems of ultracold atoms using a rapid ramp across a p-wave Feshbach resonance. This should provide a smoking gun signature of FFLO states
Description
© 2012 American Physical Society. We thank R. Hulet and A. Dalgarno for helpful discussions. This work has been supported by MICINN (Spain) through Grants No. FIS2007-65723 and No. FIS2010-21372 Comunidad de Madrid through MICROSERES grant, Army Research Office with funding from the DARPA OLE program, Harvard-MIT CUA, NSF Grant No. DMR-07-05472, AFOSR Quantum Simulation MURI, AFOSR MURI on Ultracold Molecules, and the ARO-MURI on Atomtronics. One of us (I. Z.) acknowledges support from Real Colegio Complutense at Harvard.
Unesco subjects
Keywords
Citation
[1] A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962). [2] A. J. Leggett, Quantum Liquids (Oxford University, New York, 2006). [3] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964). [4] A. I. Larkin and Y. N. Ovchinnikov, Sov. Phys. JETP 20, 762 (1965). [5] Y. Matsuda and H. Shimahara, J. Phys. Soc. Jpn. 76, 051005 (2007). [6] K. Rajagopal and F. Wilczek, arXiv:hep-ph/0011333. [7] R. Casalbuoni and G. Nardulli, Rev. Mod. Phys. 76, 263 (2004). [8] A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005). [9] L. Radzihovsky and D. E. Sheehy, Rep. Prog. Phys. 73, 076501 (2010). [10] M. Eschrig, Phys. Today 64, 43 (2011). [11] J. M. Edge and N. R. Cooper, Phys. Rev. Lett. 103, 065301 (2009). [12] Y. L. Loh and N. Trivedi, Phys. Rev. Lett. 104, 165302 (2010). [13] J. M. Edge and N. R. Cooper, Phys. Rev. A 81, 063606 (2010). [14] R. M. Lutchyn, M. Dzero, and V. M. Yakovenko, Phys. Rev. A 84, 033609 (2011). [15] Y. Liao, A. S. C. Rittner, T. Paprotta, W. Li, G. B. Partridge, R. G. Hulet, S. K. Baur, and E. J. Mueller, Nature (London) 467, 567 (2010). [16] A related detection scheme to detect such triplet correlations is the use of photoassociation. R. Hulet (private communication). [17] S. Matsuo, H. Shimahara, and K. Nagai, J. Phys. Soc. Jpn. 63, 2499 (1994). [18] H. Shimahara, Phys. Rev. B 62, 3524 (2000). [19] H. Shimahara, J. Phys. Soc. Jpn. 71, 1644 (2002). [20] K.V. Samokhin and M. S. Mar’enko, Phys. Rev. Lett. 97, 197003 (2006). [21] H. Burkhardt and D. Rainer, Ann. Phys. (Leipzig) 506, 181 (1994). [22] Z. Zheng and D. F. Agterberg, Phys. Rev. B 82, 024506 (2010). [23] O. Dutta and A. G. Lebed, Phys. Rev. B 78, 224504 (2008). [24] I. Zapata, B. Wunsch, N. T. Zinner, and E. Demler, Phys. Rev. Lett. 105, 095301 (2010). [25] X.-J. Liu, H. Hu, and P. D. Drummond, Phys. Rev. A 76, 043605 (2007). [26] A. Bulgac, M. McNeilForbes, and A. Schwenk, Phys. Rev. Lett. 97, 020402 (2006). [27] S. Gaudio, J. Jackiewicz, and K. S. Bedell, Philos. Mag. Lett. 87, 713 (2007). [28] A. Bulgac and S. Yoon, Phys. Rev. A 79, 053625 (2009). [29] K. R. Patton and D. E. Sheehy, Phys. Rev. A 83, 051607R (2011). [30] Note that, by construction, the triplet component of the gap is zero, because we have neglected the triplet part of the interaction. This does not preclude, however, the emergence of triplet pair correlations in the Cooper pair wave function. [31] P. G. de Gennes, Superconductivity of Metals and Alloys (Westview, Boulder, 1999). [32] A. B. Vorontsov, J.A. Sauls, and M. J. Graf, Phys. Rev. B 72, 184501 (2005). [33] M. Greiner, C.A. Regal, and D. S. Jin, Nature (London) 426, 537 (2003). [34] C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92, 040403 (2004). [35] M.W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, A. J. Kerman, and W. Ketterle, Phys. Rev. Lett. 92, 120403 (2004). [36] R. B. Diener and T. L. Ho, arXiv:cond-mat/0404517v1. [37] E. Altman and A. Vishwanath, Phys. Rev. Lett. 95, 110404 (2005). [38] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010). [39] H. Moritz, T. Sto¨ferle, K. Gu¨enter, M. Ko¨ hl, and T. Esslinger, Phys. Rev. Lett. 94, 210401 (2005).
Collections