Publication:
Resonant Hawking radiation in Bose-Einstein condensates

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2011-06-29
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Iop Publishing Ltd
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We study double-barrier interfaces separating regions of asymptotically subsonic and supersonic flow of Bose condensed atoms. These setups contain at least one black hole sonic horizon from which the analogue of Hawking radiation should be generated and emitted against the flow in the subsonic region. Multiple coherent scattering by the double-barrier structure strongly modulates the transmission probability of phonons, rendering it very sensitive to their frequency. As a result, resonant tunneling occurs with high probability within a few narrow frequency intervals. This gives rise to highly non-thermal spectra with sharp peaks. We find that these peaks are mostly associated with decaying resonances and only occasionally with dynamical instabilities. Even at achievable non-zero temperatures, the radiation peaks can be dominated by spontaneous emission, i.e. enhanced zero-point fluctuations, and not, as is often the case in analogue models, by stimulated emission.
Description
© IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. We thank A Aspect, C Díaz Guerra, L Garay, P Leboeuf, N Pavloff, G V Shlyapnikov and C Westbrook for valuable discussions. This work was supported by the joint France–Spain Acción Integrada HF2008-0088 (PHC—Picasso Program). Support from MICINN (Spain) through grants FIS2007-65723 and FIS2010-21372, from Comunidad de Madrid through grant MICROSERES-CM (S2009/TIC-1476) and from the Swiss National Science Foundation is also acknowledged
Unesco subjects
Keywords
Citation
[1] Hawking S W 1974 Nature 248 30 Hawking S W 1975 Commun. Math. Phys. 43 199 [2] Unruh W G 1976 Phys. Rev. D 14 870 [3] Unruh W G 1981 Phys. Rev. Lett. 46 1351 [4] Garay L J, Anglin J R, Cirac J I and Zoller P 2001 Phys. Rev. Lett. 85 4643 Garay L J, Anglin J R, Cirac J I and Zoller P 2001 Phys. Rev. A 63 023611 [5] Chapline G, Laughlin R B and Santiago D I 2003 Analog Models of General Relativity ed M Visser (Singapore: World Scientific) pp 179–98 [6] Balbinot R, Fabri A, Fagnocchi S, Recati A and Carusotto I 2008 Phys. Rev. A 78 021603 [7] Carusotto I, Fagnocchi S, Recati A, Balbinot R and Fabri A 2008 New J. Phys. 10 103001 [8] Macher J and Parentani R 2009 Phys. Rev. A 80 043601 [9] Finazzi S and Parentani R 2010 New J. Phys. 12 095015 [10] Coutant A and Parentani R 2010 Phys. Rev. D 81 084042 [11] Zapata I and Sols F 2009 Phys. Rev. Lett. 102 180405 [12] Leonhardt U and Philbin T G 2007 Quantum Analogues: From Phase Transitions to Black Holes and Cosmology ed W G Unruh and R Schutzhold (Berlin: Springer) (arXiv:0803.0669) pp 229–45 [13] Corley S and Jacobson T 1999 Phys. Rev. D 59 124011 [14] Recati A, Pavloff N and Carusotto I 2009 Phys. Rev. A 80 043603 [15] Lahav O, Ital A, Blumkin A, Gordon C, Rinott S, Zayats A and Steinhauer J 2010 Phys. Rev. Lett. 105 240401 [16] Unruh W G 1995 Phys. Rev. D 51 2827 [17] Finazzi S and Parentani R 2011 Phys. Rev. D 83 084010 [18] Jackson A D, Kavoulakis G M and Pethick C J 1998 Phys. Rev. A 58 2417 [19] Leboeuf P and Pavloff N 2001 Phys. Rev. A 64 033602 [20] Pavloff N and Carusotto I unpublished [21] Barceló C, Liberati S, Sonego S and Visser M 2006 Phys. Rev. Lett. 97 171301 [22] Mayoral C, Recati A, Fabbri A, Parentani R, Balbinot R and Carusotto I 2011 New J. Phys. 13 024007 [23] Birrell N D and Davies P C W 1982 Quantum Fields in Curved Space (Cambridge: Cambridge University Press) [24] Leonhardt U, Kiss T and Öhberg P 2003 J. Opt. B 5 S42 [25] Leonhardt U, Kiss T and Öhberg P 2003 Phys. Rev. A 67 033602 [26] Unruh W G and Schützhold R 2005 Phys. Rev. D 71 024028 [27] Chen X-J, Chen Z-D and Huang N-N 1998 J. Phys. A: Math. Gen. 31 6929 [28] Zapata I et al unpublished [29] Mostrafazadeh A 2004 J. Math. Phys. 45 932 [30] Barceló C, Cano A, Garay L J and Jannes G 2006 Phys. Rev. D 74 024008 [31] Barceló C, Cano A, Garay L J and Jannes G 2007 Phys. Rev. D 75 084024 [32] Kokkotas K D and Schmidt B G 1999 Living Rev. Relativ. 2 2 (http://www.livingreviews.org/lrr-1999-2) [33] Ching E S C, Leung P T, van den Brink A M, Suen W M, Tong S S and Young K 1988 Rev. Mod. Phys. 70 1545 [34] Settimi A, Severini S and Hoenders B J 2009 J. Opt. Soc. Am. B 26 876 [35] Rossignoli R and Kowalski A M 2005 Phys. Rev. A 72 032101 [36] van den Brink A M and Young K 2001 J. Phys. A: Math. Gen. 34 2607 [37] Aspect A and Inguscio M 2009 Phys. Today 62 30 [38] Pethick C J and Smith H 2002 Bose–Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press) [39] Dalfovo F et al 1999 Rev. Mod. Phys. 71 463 [40] Leggett A J 2001 Rev. Mod. Phys. 73 307 [41] Danshita I, Yokoshi N and Kurihara S 2006 New J. Phys. 8 44 [42] Langer J S and Ambegaokar V 1967 Phys. Rev. 164 498 [43] Zapata I and Sols F 1996 Phys. Rev. B 53 6693 [44] Byrd P F and Friedman M D 1971 Handbook of Elliptic Integrals for Engineers and Scientists (Berlin: Springer) [45] Faddeev L D and Takhtajan L A 2007 Hamiltoninan Methods in the Theory of Solitons (Berlin: Springer)
Collections