Publication:
Analysis of nanostructured porous films by measurement of adsorption isotherms with optical fiber and ellipsometry

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2002-11-01
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
The Optical Society Of America
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
An optical method to determine the nanostructure and the morphology of porous thin films is presented. This procedure is based on the response of a side-polished optical fiber with the film under study, when an adsorption-desorption cycle is carried out. Spectroscopic ellipsometry provides additional information about the optical properties and adsorption behavior of the film. Pore size distribution, anisotropy, and inhomogeneity of films can be determined by use of these two complementary techniques. To check the performances and suitability of the optical method, we have characterized a typical porous material: a TiO_2 film deposited by evaporation. Water vapor has been used for the adsorption cycles. The well-known columnar structure of the evaporated TiO_2 has been evidenced, and the relation between the nanostructure and the optical properties of the film is showed.
Description
© 2002 Optical Society of America. The authors thank A. J. Fort for his helpful work on the growth of the TiO_2 films.
Keywords
Citation
1. J. M. Bennett, E. Pelletier, G. Albrand, J. P. Borgogno, B. Lazarides, C. K. Carniglia, R. A. Schmell, T. H. Allen, T. Tuttle-Hart, K. H. Guenther, A. Saxer, “Comparison of the properties of titanium dioxide films prepared by various techniques,” Appl. Opt. 28, 3303–3317 (1989). 2. J. S. Chen, S. Chao, J. S. Kao, G. R. Lai, W. H. Wang, “Substrate-dependent optical absorption characteristics of titanium dioxide thin films,” Appl. Opt. 36, 4403–4408 (1997). 3. B. A. Movchan, A. V. Demchishin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide,” Phys. Met. Metallogr. (USSR) 28, 83–90 (1969). 4. J. A. Thornton, “High rate thick film growth,” Annu. Rev. Mater. Sci. 7, 239–260 (1977). 5. R. Messier, A. P. Giri, R. A. Roy, “Revised structure zone model for thin film physical structure,” J. Vac. Sci. Technol. A 2, 500–503 (1984). 6. A. G. Dirks, H. J. Leamy, “Columnar nanostructure in vapor deposited thin films,” Thin Solid Films 45, 219–323 (1977). 7. P. Ramanlal, L. M. Sander, “Theory of ballistic aggregation,” Phys. Rev. Lett. 54, 1828–1831 (1985). 8. I. Hodgkinson, Q. H. Wu, J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998). 9. F. Flory, D. Endelema, E. Pelletier, I. Hodgkinson, “Anisotropy in thin films: modeling and measurement of guided and nonguided optical properties: application to TiO2 films,” Appl. Opt. 32, 5649–5659 (1993). 10. I. Hodgkinson, J. Hazel, Q. H. Wu, “In situ measurement of principal refractive indices of thin films by two-angle ellipsometry,” Thin Solid Films 313–314, 368–372 (1998). 11. C. K. Carniglia, “Ellipsometric calculation for nonabsorbing thin films with linear refractive-index gradients,” J. Opt. Soc. Am. A 7, 848–856 (1990). 12. Md. Mosaddeq-ur-Rahman, G. Yu, K. M. Krishna, T. Soga, J. Watanabe, T. Jimbo, M. Umeno, “Determination of optical constants of solgel-derived inhomogeneous TiO2 films by spectroscopic ellipsometry and transmission spectroscopy,” Appl. Opt. 37, 691–697 (1998). 13. G. Parjadis de Lariviére, J. M. Frigerio, F. Bridou, J. Rivory, “Modelling of ellipsometric data of inhomogeneous TiO2 films,” Thin Solid Films 233–234, 458–462 (1993). 14. S. Y. Kim, “Simultaneous determination of refractive index, extinction coefficient, and void distribution of titanium dioxide thin film by optical methods,” Appl. Opt. 35, 6703–6707 (1996). 15. A. Álvarez-Herrero, A. J. Fort, H. Guerrero, E. Bernabeu, “Ellipsometric characterization and influence of relative humidity on TiO2 layers optical properties,” Thin Solid Films 349, 212–219 (1999). 16. A. Álvarez-Herrero, R. L. Heredero, E. Bernabeu, D. Levy, “Adsorption of water on porous Vycor glass studied by ellipsometry,” Appl. Opt. 40, 527–532 (2001). 17. B. P. Pal, G. R. Chakravarty, “All-fiber wavelength selective components for optical communication,” Commun. Instr. 5, 181–208 (1997). 18. S. J. Gregg, K. S. W. Sing, Adsorption, Surface Area and Porosity (Academic, New York, 1997). 19. R. M. A. Azzam, N. N. Bashara, Ellipsometry and Polarized Light (North Holland, Amsterdam, 1977). 20. R. W. Collins, D. E. Aspnes, E. A. Irene, “Proceedings of the Second International Conference on Spectroscopic Ellipsometry,” Thin Solid Films 313–314 (1998). 21. V. A. Tolmachev, “Adsorption-ellipsometry method of studying the optical profile, thickness, and porosity of thin films,” J. Opt. Technol. 66, 596–607 (1999). 22. V. A. Tolmachev, “Determination of the porosity of uniform films by adsorption-ellipsometric method,” Opt. Spectrosc. 84, 584–588 (1998). 23. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10, 2395–2413 (1971). 24. D. E. Aspnes, A. A. Studna, “High precision scanning ellipsometer,” Appl. Opt. 14, 220–228 (1975). 25. H. K. Pulker, Coatings on Glass (Elsevier, Amsterdam, 1999). 26. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1993).
Collections