Publication:
Interface quality study of ECR-deposited and rapid thermal annealed silicon nitride Al/SiNx : H/InP and Al/SiNx : H/In0.53Ga0.47As structures by DLTS and conductance transient techniques

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2000-04
Authors
Mártil de la Plaza, Ignacio
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Pergamon-Elsevier Science Ltd.
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In this article, we study the influences of the rapid thermal annealing temperature and dielectric composition on the electrical characteristics of ECR-deposited silicon nitride SiNx:H-InP and SiNx:H-InGaAs interfaces. C-V deep level transient spectroscopy (DLTS) and conductance transient analysis have been applied. As for InP cases, DLTS results reveal that rapid thermal annealing application increases interfacial state density. In contrast, transient conductance measurements show that disorder induced gap-state (DIGS) damage density diminishes when RTA is applied. So, we can conclude that RTA treatments take out the insulator damage to the interface. In the InGaAs-n cases, we have observed that DIGS damage evolution with RTA temperature is opposite to the interfacial state density. This behaviour seems to suggest some temperature activated defect exchange between the insulator and the interface. Finally, as for the insulator composition influence on the interface quality of the InGaAs-n samples, DLTS results suggest that the intermediate x values (1.43 and 1.50) provide better interfaces than extreme x values. Conductance transient measurements add complementary information: insulator damage increases when x increases. Hence, x = 1.43 seems to be the best choice to improve the overall interface quality. (C) 2000 Elsevier Science Ltd. All rights reserved.
Description
Workshop on Dielectrics in Microelectronics (10. 2000. Barcelona). © Elsevier Science Ltd.
Unesco subjects
Keywords
Citation
[1] Sitbon, S., Hugon, M.C., Agins, B., Abel, F., Courant, J.L., Puech, M.. J. Vac. Sci. Technol., 1995, A13(6), 2900. [2] Kapila, A., Si, X., Malhora, V., Appl. Phys. Lett., 1993, 62 (18), 2259. [3] García, S., Mártil, I., González-Díaz, G., Castán, H., Dueñas, S., J. Appl. Phys., 1998,83 (1), 600. [4] Redondo, E., Blanco, N., Mártil, I., González-Díaz, G., Peláez, R., Dueñas, S., Castán, H., J. Vac. Sci. Technol., 1999, A17 (4), 2178. [5] Dueñas, S., Peláez, R., Castán, H., Pinacho, R., Quintanilla, L., Barbolla, J., Mártil, I., Redondo, E., González-Díaz, G., J. Mater. Sci.: Mater. Electron., 1999, 10, 373. [6] Peláez, R., Castán, H., Dueñas, S., Barbolla, J., Redondo, E., Mártil, I., González-Díaz, G., J. Appl. Phys., 1999, 86 (12), 6944. [7] Lau, W.S., Fonash, S.J., Kanicki, J., J. Appl. Phys. 1989, 66, 2765. [8] He, L., Hasegawa, H., Sawada, T., Ohno, H., J. Appl. Phys., 1988, 63, 2120. [9] He, L., Hasegawa, H., Sawada, T., Ohno, H., Jpn. J. Appl. Phys.: Part 1, 1988, 27, 512. [10] Dueñas, S., Peláez, R., Castán, H., Pinacho, R., Quintanilla, L., Barbolla, J., Mártil, I., González-Díaz, G., Appl. Phys. Lett., 1997, 71 (6), 826.
Collections