Publication:
Fabrication and characterisation of thin low-temperature MBE-compatible silicon oxides of different stoichiometry

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1999-07-30
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science SA
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We developed and tested three MBE-compatible processes for the deposition of high-quality low-temperature silicon oxides and oxynitrides in the ultra high vacuum at substrate temperatures between room temperature and 500 degrees C, gas enhanced evaporation (GEE), plasma enhanced evaporation (PEE) and plasma enhanced oxidation (PEO). The deposited layers were thoroughly investigated and compared with respect to their electrical, optical and stoichiometrical properties by means of ellipsometry, mechanical profilometry, Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Rutherford backscattering (RBS), Fourier transform infrared ((FTIR) spectroscopy, and by electrical measurements (I-V, C-V) on MOS structures. A model of the growth mechanism for each of the processes is suggested.
Description
© Elsevier Science Ireland Ltd. The authors like to thank J. Messarosch, G. Fehlauer, H. Baumgärtner, F. Kaesen, H. Geiger, V.R. Rao and T. Pompl for their assistance in electrical measurements, sample preparation and fruitful discussions. The expertise of J. Ramm, E. Beck and R. Slepicka of Balzers AG is greatfully acknowledged. This work was supported by the BMBF under grant no. BA-672. One of the authors, A. Strass, likes to thank the German Academic Exchange Service (DAAD) for financial assistance during his scientific stay at the Universidad de Chile.
Unesco subjects
Keywords
Citation
[1] M. Nakamura, Y. Mochizuki, K. Usami, Y. Itoh, T. Nozaki, J. Electrochem. Soc. 132 (1985) 482. [2] K. Machida, N. Shimoyama, J. Takahashi, N. Yabumoto, E. Arai, IEEE Trans, Electron. Devices 41 (1994) 709. [3] J. Makwana, B. Grula, D. Monteilh, R. Tyldesley, A. Sorensen, Semiconduct. Int. 10 (1997) 125. [4] J.H. Magerlein, J.M. Baker, G.R. Proto, K.R. Grebe, S.P. Klepner, M.J. Palmer, A.J. Warnecke, J. Vac. Sci. Technol. B 2 (4) (1984) 636. [5] N. Chand, et al., J. Cryst. Growth 148 (1995) 336. [6] D.C. Diaz, C.L. Schow, J. Qi, J.C. Campbell, J.C. Bean, L.J. Peticolas, Appl. Phys. Lett. 69 (19) (1996) 2798. [7] A. Durandet, A. Perry, R.W. Boswell, et al., Electron. Lett. 32 (4) (1996) 326. [8] S.K. Ghandhi, VLSI Fabrication Principles, 2nd ed., Wiley, New York, 1993 Chapter 8. [9] S. Fujita, M. Nishihara, W.L. Hoi, A. Sasaki, Jpn. J. Appl. Phys. 20 (1981) 917. [10] B.J. Standbery, et al., Solut. Cells 14 (1985) 289. [11] The National Technology Roadmap for Semiconductors, SIA Semiconductor Industry Association, 1994, p. 103. [12] H. Gossner, I. Eisele, L. Risch, Jpn. J. Appl. Phys. 33 (1) (1994) 2423. [13] B. Fowler, E. O'Brien, J. Vac. Sci. Technol. B 12 (1) (1994) 441. [14] A. Strass, W. Hansch, P. Bieringer, A. Neubecker, F. Kaesen, A. Fischer, I. Eisele, Surf. Coat. Technol. 97 (1997) 158. [15] W. Hansch, E. Hammerl, W. Kiunke, I. Eisele, J. Ramm, E. Beck, Jpn. J. Appl. Phys. 33 (1) (1994) 2263. [16] J. Ramm, E. Beck, A. Dommann, I. Eisele, D. KruÈger, Thin Solid Films 246 (1994) 158. [17] L.E. Davis, N.C. MacDonald, P.W. Palmberg, G.E. Riach, R.E. Weber, Handbook of Auger Electron Spectroscopy, Physical Electronics Industries, Eden Prairie, 1976. [18] B.E. Deal, A.S. Grove, J. Appl. Phys. 36 (1965) 3770. [19] I. Brodie, J.J. Muray, The physics of crofabrication, Plenum, New York, 1982. [20] Y.Z. Hu, Y.Q. Wang, M. Li, E.A. Irene, J. Vac. Sci. Technol. A 4 (11) (1993) 900. [21] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of XPS, Physical Electronics Industries, Eden Prairie, 1992. [22] R. Alfonsetti, L. Lozzi, M. Passacantando, P. Picozzi, S. Santucci, Appl. Surf. Sci. 70/71 (1993) 222. [23] J.R. Shallenberger, J. Vac. Sci. Technol. A 14 (3) (1996) 693. [24] H. Niwano, Y. Katakura, Y. Takeda, N. Takakuwa, M. Myamoto, J. Vac. Sci. Technol. A 9 (1991) 195. [25] P.G. Pai, S.S. Chao, Y. Takagi, G. Lucovsky, J. Vac. Sci. Technol. A 4 (1986) 689. [26] D.V. Tsu, G. Lucovsky, B.N. Davidson, Physical Rev. B 40 (1989) 1795. [27] D.J. DiMaria, R. Ghez, D.W. Wong, J. Appl. Phys. 51 (9) (1980) 4830. [28] A. Strass, W. Hansch, F. Kaesen, G. Fehlauer, P. Bieringer, A. Fischer, I. Eisele, 7th Int. Symp. Si MBE, Thin Solid Films, 321 (1998) 261--264. [29] T.L. Chu, J.R. Szedon, C.H. Lee, Solid State Electron. 10 (1967) 897. [30] L.I. Maissel, R. Glang, Handbook of Thin Film Technology, McGraw-Hill, New York, 1970. [31] T.V. Herak, T.T. Chau, D.J. Thomson, S.R. Mejia, D.A. Buchanan, J. Kao, Phys. 65 (6) (1994) 2457. [32] Y.-B Park, J.-K. Kang, S.-W. Rhee, Thin Solid Films 280 (1996) 43. [33] P. Dimitrakis, G.J. Papaioannou, J. Appl. Phys. 80 (3) (1996) 1605. [34] M. Konuma, Film deposition by plasma techniques, Springer±Verlag, Berlin, 1992. [35] B.E. Deal, E.L. McKenna, P.L. Castro, J. Electrochem. Soc.: Solid State Sci. 116 (7) (1969) 997. [36] Chemical Rubber Company, CRC Handbook of Chemistry and Physics, 73rd ed., 1993.
Collections