Publication:
Low interface trap density in rapid thermally annealed Al/SiNx : H/InP metal-insulator-semiconductor devices

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1999-02-15
Authors
Mártil de la Plaza, Ignacio
Redondo, E.
Blanco, N.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Inst Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
A minimum interface trap density of 10(12) eV(-1) cm(-2) was obtained on SiNx:H/InP metalinsulator-semiconductor structures without InP surface passivation. The SiNx:H gate insulator was obtained by the electron cyclotron resonance plasma method. This insulator was deposited in a single vacuum run and was composed of two layers with different nitrogen-to-silicon ratios. The first layer deposited onto the InP was grown with a nitrogen-to-silicon ratio of N/Si=1.55, whereas the second one was grown with a N/Si ratio of N/Si = 1.43. After the insulator deposition, rapid thermal annealing of the devices was performed at a constant annealing time of 30 s. The interface trap density minimum value was obtained at an optimum annealing temperature of 500 degrees C. Higher annealing temperatures promote thermal degradation of the interface and a sharp increase in the trap density.
Description
© American Institute of Physics. The authors would like to thank C. A. I. de Implantación Iónica from the Universidad Complutense in Madrid for technical assistance with the ECR-CVD system.
Unesco subjects
Keywords
Citation
1) A. Katz, Indium Phosphide and Related Materials: Processing, Technology and Devices (Artech House, Boston, 1991). 2) S. García, I. Mártil, G. González-Díaz, and M. Fernández, Semicond. Sci. Technol. 12, 1650 (1997). 3) S. García, I. Mártil, G. González-Díaz, E. Castán, S. Dueñas, and M. Fernández, J. Appl. Phys. 83, 600 (1998). 4) D. G. Park, Z. Chen, D. M. Diatezua, Z. Wang, A. Rockett, H. Morkoç and S. A. Alterovitz, Appl. Phys. Lett. 70, 1263 (1997). 5) F. Martínez, I. Mártil, G. González-Díaz, B. Selle, and I. Sieber, J. Non-Cryst. Solids 523, 227 (1998). 6) E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982). 7) A. Kapila, X. Si, and V. Malhotra, Appl. Phys. Lett. 62, 2259 (1993). 8) D. Landheer, G. Yousefi, J. B. Webb, R. Kwok, and W. Lau, J. Appl. Phys. 75, 3516 (1994). 9) H. Hasegawa, Proc. SPIE 1144, 150 (1989). 10) S. C. Witczak, J. S. Suehle, and M. Gaitán, Solid-State Electron. 35, 345 (1992). 11) M. C. Hugon, R. Delmotte, B. Aguis, and J. L. Courant, J. Vac. Sci. Technol. A 15, 3143 (1997). 12) H. Matsuura, M. Yoshimoto, and H. Matsunami, Jpn. J. Appl. Phys., Part 1, 35, 2614 (1996). 13) Z. Yin and F. W. Smith, Phys. Rev. B 53, 4507 (1991). 14) S. García, I. Mártil, G. González-Díaz, E. Castán, S. Dueñas, and M. Fenández, J. Appl. Phys. 83, 332 (1998).
Collections