Publication:
Good quality Al/SiNx : H/InP metal-insulator-semiconductor devices obtained with electron cyclotron resonance plasma method

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1998-01-01
Authors
Mártil de la Plaza, Ignacio
García, S.
Castán, E.
Dueñas, S.
Fernández, M.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We have obtained Al/SiNx:H/InP metal-insulator-semiconductor devices depositing SiNx:H thin films by the electron cyclotron resonance plasma method at 200 degrees C. The electrical properties of the structures were analyzed according to capacitance-voltage and deep level transient spectroscopy measurements. We deduce an inverse correlation between the insulator composition-the N/Si ratio-and the density of interface traps: those films with the maximum N/Si ratio (1.49) produce devices with the minimum trap density-2 x 10(12) cm(-2) eV(-1) at 0.42 eV. above the midgap. We explain the influence of film composition on the interface trap density in terms of a substitution of phosphorous vacancies at the InP surface, V-p, by N atoms coming from the insulator, N-Vp. The values obtained in our research for the interface trap distribution were similar to other published results for devices that use chemical and/or physical passivation processes of the InP surface prior to the deposition of the insulator.
Description
© American Institute of Physics. This research was partially supported by the Spanish Government (CICYT), under Grant no. TIC 93/0175.
Unesco subjects
Keywords
Citation
1) D.G. Park, M. Tao, D. Li, A.E. Botchkarev, Z. Fan, Z. Wang, S.N. Mohammed, A. Rockett, J.R. Abelson and J. Morkoc, J. Vac. Sci. Technol. B, 14, 2674 (1996). 2) S. García, J.M. Martín, I. Mártil, M. Fernández and G. González Díaz, Philos. Mag. B, 73, 487 (1996). 3) K. Semo, S. Hayashi, S. Wickramanayaka and Y. Hatanake, Thin Solid Films, 281-292, 397 (1996). 4) R.I. Hegde, P.J. Tobin, K.G. Reid, B. Maiti and S.A. Ajuria, Appl. Phys. Lett., 66, 2882 (1995). 5) P.J.M. Permiter and J.G. Swanson, J. Electron. Mater., 25, 1506 (1993). 6) A. Kapila, X. Si and V. Malhotra, Appl. Phys. Lett., 62, 2259 (1993). 7) K. Vaccaro, H.M. Dauplaise, A. Davis, S.M. Spaziani and J.P. Lorenzo, Appl. Phys. Lett., 67, 527 (1995). 8) C.S. Sundararamen, P. Milhelich, R.A. Masut and F. Currie, Appl. Phys. Lett., 64, 2279 (1994). 9) A. Kapila, V. Malhotra, L.H. Camnitz, K.L. Seaward and D. Mars, J. Vac. Sci. Technol. B, 13, 10 (1995). 10) E.H. Nicollian and J.R. Brews, MOS Physics and Technology (Wiley. New York, 1982). 11) T. Hashizume, H.Hasegawa, R. Riemenschneider and H.L. Hartnagel, Jpn. J. Appl. Phys., Part. 1, 33, 727 (1994). 12) D. Landheer, Z.H. Lu, J.M. Baribeau, L.J. Huang and W.M. Lau, J. Electron. Mater., 23, 943 (1994). 13) L. He, H. Hasegawa, T. Sawada and H. Ohno, J. Appl. Phys., 63, 2120 (1998). 14) H. Hasegawa, M. Akazawa, H. Ishii, A. Uraie, K. Iwadate and H. Ohno, J. Vac. Sci. Technol. B, 8, 867 (1990).
Collections