Publication:
Role of deep levels and interface states in the capacitance characteristics of all‐sputtered CuInSe2/CdS solar cell heterojunctions

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1989-04-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
All‐sputtered CuInSe2/CdS solar cellheterojunctions have been analyzed by means of capacitance‐frequency (C‐F) and capacitance‐bias voltage (C‐V) measurements. Depending on the CuInSe2 layer composition, two kinds of heterojunctions were analyzed: type 1 heterojunctions (based on stoichiometric or slightly In‐rich CuInSe2 layers) and type 2 heterojunctions (based on Cu‐rich CuInSe2 layers). In type 1 heterojunctions, a 80‐meV donor level has been found. Densities of interface states in the range 101 0–101 1 cm2 eV− 1 (type 1) and in the range 101 2–101 3 cm− 2 eV− 1 (type 2) have been deduced. On the other hand, doping concentrations of 1.6×101 6 cm− 3 for stoichiometric CuInSe2 (type 1 heterojunction) and 8×101 7 cm− 3 for the CdS (type 2 heterojunction) have been deduced from C‐Vmeasurements.
Description
© American Institute of Physics. This work was partially financed by the Spain-USA Joint Committe under Grant No. CCA-8411046.
Unesco subjects
Keywords
Citation
1) M.N. Ruberto and A. Rathwarf, J. Appl. Phys., 6, 4662 (1987). 2) R.K.Ahrenkiel, J. Appl. Phys., 59, 181 (1986). 3) M. Eron and A. Rothwarf, J. Appl. Phys., 57, 2275 (1985). 4) H. Tavakolian and J.R. Sites, in Proceedings of the 18th IEEE Photovoltaix Specialists' Conference, Las Vegas, NV, 1985 (IEEE, New York, 1986), p. 1065. 5) V. Ramanathan, R. Noufi and R.C. Powell, J. Appl. Phys., 63, 1203 81988). 6) R.K. Ahrenkiel, Sol. Cell, 16, 549 (1986). 7) D.L. Losse, J. Appl. Phys., 46, 2204 (1975). 8) I. Mártil, G. González-Díaz and F. Sánchez-Quesada, Thin Solid Films, 114, 327 (1984). 9) I. Mártil, J. Santamaría, E. Iborra, G. González-Díaz and F. Sánchez-Quesada, J. Appl. Phys., 62, 4163 (1987). 10) J. Santamaría, I. Mártil, E. Iborra, G. González-Díaz and F. Sánchez-Quesada, (unpublished). 11) H. Tavakolian and R.E. Hollingsworth, J. Vac. Sci. Technol. A, 4, 488 (1986). 12) K.L. Chopra and S.R. Das, Thin Film Solar Cells (Plenum, New York, 1983). 13) L.B. Fabrick and K.L. Eskenas, in Proceedings of the 18th Photovoltaixs Specialists' Conference, Las Vegas, NV, 1985 (IEEE, New York, 1986), p. 754. 14) L.C. Isset, J. Appl. Phys., 56, 3508 (1984). 15) D.V. Lang, J.D. Cohen and J.P. Harbison, Phys. Rev. B, 25, 5285 (1982). 16) A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric, London, 1983). 17) C. Rincón, C. Bellabarba, J. González and G. Sánchez-Pérez, Sol. Cells, 16, 335 (1986). 18) G. Masse and E. Redjai, J. Appl. Phys., 56, 1154 (1984). 19) J. Santamaría, E. Iborra, I. Mártil, G. González-Díaz and F. Sánchez-Quesada, Semicond. Sci. Technol., 3, 781 (1988). 20) L.C. Kimmerling, J. Appl. Phys., 45, 1839 (1974). 21) T.J. Coutts and J.D. Meakin, Eds., Current Topics in Photovoltaics (Academic, London, 1986). 22) G.I. Roberts and C.R. Crowell, J. Appl. Phys., 41, 1767 (1970). 23) J.L. Pautrat, B. Katircioglu, N. Magnea, D. Bensahel, J.C. Pfister and L. Revoil, Solid State Electron., 23, 1159 (1980). 24) A. Rothwarf, Sol. Cells, 16, 567 (1986). 25) R.B. Hall and V.P. Singh, J. Appl. Phys., 50, 6406 (1979).
Collections