Publication:
Strong spin-dependent negative differential resistance in composite graphene superlattices

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2013-10
Authors
Munarriz, J.
Gaul, C.
Orellana, P. A.
Mueller, C. A.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We find clear signatures of spin-dependent negative differential resistance in compound systems comprising a graphene nanoribbon and a set of ferromagnetic insulator strips deposited on top of it. The periodic array of ferromagnetic strips induces a proximity exchange splitting of the electronic states in graphene, resulting in the appearance of a superlattice with a spin-dependent energy spectrum. The electric current through the device can be highly polarized and both the current and its polarization manifest nonmonotonic dependence on the bias voltage. The device operates therefore as an Esaki spin diode, which opens possibilities to design new spintronic circuits.
Description
© 2013 American Physical Society. Work in Madrid was supported by the MICINN (Project No. MAT2010-17180). Research of C.G. was supported by the PICATA postdoctoral fellowship from the Moncloa Campus of International Excellence (UCM-UPM). P.A.O. acknowledges financial support from the FONDECYT (Grant No. 1100560).
Unesco subjects
Keywords
Citation
1. L. Esaki, Phys. Rev. 109, 603 (1958). 2. L. Esaki, Rev. Mod. Phys. 46, 237 (1974). 3. S. Sze and K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, New York, 2006). 4. A. V. Malyshev, Phys. Rev. Lett. 98, 096801 (2007). 5. R. Tsu and L. Esaki, Appl. Phys. Lett. 22, 562 (1973). 6. R. Kümmel, U. Gunsenheimer, and R. Nicolsky, Phys. Rev. B 42, 3992 (1990). 7. F. Léonard and J. Tersoff, Phys. Rev. Lett. 85, 4767 (2000). 8. P. Bedrossian, D. M. Chen, K. Mortensen, and J. A. Golovchenko, Nature (London) 342, 258 (1989). 9. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004). 10. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005). 11. N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Nature (London) 448, 571 (2007). 12. W. Han, J.-R. Chen, D. Wang, K. M. McCreary, H. Wen, A. G. Swartz, J. Shi, and R. K. Kawakami, Nano Lett. 12, 3443 (2012). 13. P. J. Zomer, M. H. D. Guimaraes, N. Tombros, and B. J. van Wees, Phys. Rev. B 86, 161416 (2012). 14. M. B. Lundeberg, R. Yang, J. Renard, and J. A. Folk, Phys. Rev. Lett. 110, 156601 (2013). 15. A. V. Rozhkov, G. Giavaras, Y. P. Bliokh, V. Freilikher, and F. Nori, Phys. Rep. 503, 77 (2011). 16. J. Munarriz, F. Domínguez-Adame, P. A. Orellana, and A. V. Malyshev, Nanotechnology 23, 205202 (2012). 17. K. Wakabayashi, Y. Takane, M. Yamamoto, and M. Sigrist, New J. Phys. 11, 095016 (2009). 18. T.-T. Wu, X.-F. Wang, M.-X. Zhai, H. Liu, L. Zhou, and Y.-J. Jiang, Appl. Phys. Lett. 100, 052112 (2012). 19. H. Haugen, D. Huertas-Hernando, and A. Brataas, Phys. Rev. B 77, 115406 (2008). 20. X.-X. Yu, Y.-E. Xie, Y. T. Ou, and Y.-P. Chen, Chin. Phys. B 21, 107202 (2012). 21. Z. P. Niu, F. X. Li, B. G. Wang, L. Sheng, and D. Y. Xing, Eur. Phys. J. B 66, 245 (2008). 22. E. Faizabadi, M. Esmaeilzadeh, and F. Sattari, Eur. Phys. J. B 85, 198 (2012). 23. G. J. Ferreira, M. N. Leuenberger, D. Loss, and J. C. Egues, Phys. Rev. B 84, 125453 (2011). 24. M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007). 25. Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97, 216803 (2006). 26. J. Munarriz, F. Domínguez-Adame, and A. V. Malyshev, Nanotechnology 22, 365201 (2011). 27. D. F. Förster, Ph.D. thesis, Universität zu Köln, (2011). 28. A. G. Swartz, P. M. Odenthal, Y. Hao, R. S. Ruoff, and R. K. Kawakami, ACS Nano 6, 10063 (2012). 29. J. Zou, G. Jin, and Y.-Q. Ma, J. Phys.: Condens. Matter 21, 126001 (2009). 30. Y. Gu, Y. H. Yang, J. Wang, and K. S. Chan, J. Appl. Phys. 105, 103711 (2009). 31. C. S. Lent and D. J. Kirkner, J. Appl. Phys. 67, 6353 (1990). 32. D. Z.-Y. Ting, E. T. Yu, and T. C. McGill, Phys. Rev. B 45, 3583 (1992). 33. J. Schelter, D. Bohr, and B. Trauzettel, Phys. Rev. B 81, 195441 (2010). 34. P. R. Wallace, Phys. Rev. 71, 622 (1947). 35. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009). 36. L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 (2006). 37. M. Barbier, P. Vasilopoulos, and F. M. Peeters, Phys. Rev. B 81, 075438 (2010). 38. Q. Zhao, J. Gong, and C. A. Muller, ¨ Phys. Rev. B 85, 104201 (2012). 39. M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985).
Collections