Publication:
Stability and decay of Bloch oscillations in the presence of time-dependent nonlinearity

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2011-11-23
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We consider Bloch oscillations of Bose-Einstein condensates in the presence of a time-modulated s-wave scattering length. Generically, the interaction leads to dephasing and decay of the wave packet. Based on a cyclic-time argument, we find-in addition to the linear Bloch oscillation and a rigid soliton solution-an infinite family of modulations that lead to a periodic time evolution of the wave packet. In order to quantitatively describe the dynamics of Bloch oscillations in the presence of time-modulated interactions, we employ two complementary methods: collective coordinates and the linear stability analysis of an extended wave packet. We provide instructive examples and address the question of robustness against external perturbations.
Description
© 2011 American Physical Society. This work was supported in Madrid by Ministerio de Ciencia e Innovación (MICINN) (projects MOSAICO and MAT2010-17180) and in Singapore by the National Research Foundation & Ministry of Education. C.G. acknowledges funding from CEI Campus Moncloa, PICATA program. R.P.A.L. acknowledges financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). C.G. and C.A.M. acknowledge financial support from Deutsche Forschungsgemeinschaft (DFG) for the time when both were affiliated with the Universität Bayreuth. Travel between Bayreuth and Madrid was supported by the joint program Acciones Integradas of Deutscher Akademischer Auslandsdienst (DAAD) and MICINN.
Unesco subjects
Keywords
Citation
[1] B. P. Anderson and M. A. Kasevich, Science 282, 1686 (1998). [2] F. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni, A. Smerzi, and M. Inguscio, Science 293, 843 (2001). [3] O. Morsch, J. H. Múller, M. Cristiani, D. Ciampini, and E. Arimondo, Phys. Rev. Lett. 87, 140402 (2001). [4] C. Zener, Proc. R. Soc. London A 145, 523 (1934). [5] F. Bloch, Z. Phys. 52, 555 (1929). [6] M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, Phys. Rev. Lett. 76, 4508 (1996). [7] S. R. Wilkinson, C. F. Bharucha, K. W. Madison, Q. Niu, and M. G. Raizen, Phys. Rev. Lett. 76, 4512 (1996). [8] H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch, and E. Arimondo, Phys. Rev. Lett. 99, 220403 (2007). [9] A. Eckardt, C. Weiss, and M. Holthaus, Phys. Rev. Lett. 95, 260404 (2005). [10] E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, and H.-C. Nagerl, ¨ Phys. Rev. Lett. 104, 200403 (2010). [11] J. Feldmann, K. Leo, J. Shah, D. A. B. Miller, J. E. Cunningham, T. Meier, G. von Plessen, A. Schulze, P. Thomas, and S. Schmit- Rink, Phys. Rev. B 46, 7252 (1992). [12] K. Leo, P. H. Bolivar, F. Brüggemann, R. Schwedler, and K. Köhler, Solid State Commun. 84, 943 (1992). [13] L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L. D. Carr, Y. Castin, and C. Salomon, Science 296, 1290 (2002). [14] E. Tiesinga, B. J. Verhaar, and H. T. C. Stoof, Phys. Rev. A 47, 4114 (1993). [15] M. Gustavsson, E. Haller, M. J. Mark, J. G. Danzl, G. Rojas- Kopeinig, and H.-C. Nägerl, Phys. Rev. Lett. 100, 080404 (2008). [16] E. Timmermans, P. Tommasini, M. Hussein, and A. Kerman, Phys. Rep. 315, 199 (1999). [17] T. Kohler, K. G ¨ oral, and P. S. Julienne, ´ Rev. Mod. Phys. 78, 1311 (2006). [18] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010). [19] S. E. Pollack, D. Dries, R. G. Hulet, K. M. F. Magalhäes, E. A. L. Henn, E. R. F. Ramos, M. A. Caracanhas, and V. S. Bagnato, Phys. Rev. A 81, 053627 (2010). [20] I. Vidanovié, A. Balaz, H. Al-Jibbouri, and A. Pelster, Phys. Rev. A 84, 013618 (2011). [21] R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, Phys. Rev. Lett. 83, 4756 (1999). [22] T. Pertsch, P. Dannberg, W. Elflein, A. Bräuer, and F. Lederer, Phys. Rev. Lett. 83, 4752 (1999). [23] R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, Phys. Rev. Lett. 91, 263902 (2003). [24] C. Gaul, R. P. A. Lima, E. Díaz, C. A. Müller, and F. Domínguez Adame, Phys. Rev. Lett. 102, 255303 (2009). [25] E. Díaz, C. Gaul, R. P. A. Lima, F. Dom´ınguez-Adame, and C. A. Muller, ¨ Phys. Rev. A 81, 051607R (2010). [26] A. Trombettoni and A. Smerzi, Phys. Rev. Lett. 86, 2353 (2001). [27] N. G. Markley, Principles of Differential Equations (Wiley, Hoboken, 2004). [28] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999). [29] K.-P. Marzlin and V. I. Yukalov, Eur. Phys. J. D 33, 253 (2005). [30] O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006). [31] A. Smerzi and A. Trombettoni, Phys. Rev. A 68, 023613 (2003). [32] B. Mendez and F. Dom´ınguez-Adame, J. of Phys. A 24, L331 (1991). [33] Q. Niu, X.-G. Zhao, G. A. Georgakis, and M. G. Raizen, Phys. Rev. Lett. 76, 4504 (1996). [34] D. Witthaut, M. Werder, S. Mossmann, and H. J. Korsch, Phys. Rev. E 71, 036625 (2005). [35] G. P. Agrawal,Nonlinear Fiber Optics(Academic Press, Boston, 2007). [36] M. Salerno, V. V. Konotop, and Y. V. Bludov, Phys. Rev. Lett. 101, 030405 (2008). [37] T. Hartmann, F. Keck, H. J. Korsch, and S. Mossmann, New J. Phys. 6, 2 (2004). [38] F. Domínguez-Adame, Eur. J. Phys. 31, 639 (2010). [39] V. V. Konotop and M. Salerno, Phys. Rev. A 65, 021602 (2002). [40] Y. V. Bludov, V. V. Konotop, and M. Salerno, J. Phys. B 42, 105302 (2009). [41] L. Fallani, L. De Sarlo, J. E. Lye, M. Modugno, R. Saers, C. Fort, and M. Inguscio, Phys. Rev. Lett. 93, 140406 (2004). [42] B. Wu and Q. Niu, New J. Phys. 5, 104 (2003). [43] C. Gaul and C. A. Müller, Europhys. Lett. 83, 10006 (2008). [44] S. Giorgini, L. Pitaevskii, and S. Stringari, Phys. Rev. B 49, 12938 (1994). [45] C. E. Creffield and F. Sols, Phys. Rev. A 84, 023630 (2011).
Collections